IrS SR £ —adl 19073

CERN: COMPUTING INFRASTRUCTURES FOR

Institute for Research & Innovation > ‘ FUTURE DATA ANALYSIS
in Software for High Energy Physics

Mel

« Ph.D. University of Rochester, CDF (Fermilabl!),
Top Quark, SVX Interlock

« Post-doc at Brown University on DZERQO, Single
Top Quark, Higgs, DAQ

« Professor at University of Washington,
DZERO/ATLAS/MATHUSLA/IRIS-HEP, Long Lived
Parficle/Hidden Sector Searches

The intersection between the physics, Working on Analysis Systems trying to
hardware, and computers is what drove make it possible for a professor to make
me into this field, and, initially, DAQ a plot.

unc—adl

Stream columns of data from an ATLAS XAOD 1o a Jupyter Notebook

» Declarative Data Query
Language

» What does the physicist
interface look likee

» Python

» Feeds awkward array and
numpy

Demo on Binder (click on binder badge)

In [7]:

Extracting Jet p; 1|

We define the dataset. The URI scheme localds tells the system that we want to go after a dataset from the GRID, but downloaded locally.

M ds = EventDataset('locald c16_13TeV.311389.MadGraphPythia8EvtGen_A14NNPDF31LO_HSS_LLP_mH125_mS5_ltlow.deriv.DAOD_EXOT15.€
»

Next, we build the query. At the end we get a future that will contain the PandasDF with the jet pr's. In ATLAS jet py's are in units of MeV, so we convert them
to more sensible GeV.

M df_future = ds \
.SelectMany('lambda e: e.Jets("AntiKt4EMTopoJlets")') \
.Select('lambda j: j.pt(
.AsPandasDF('JetPt")

The final thing is to turn the future into something real. We tell it to use the func-adl server as a back end. This can take a little while:

+ If the xAOD's haven't been downloaded, they must be.
+ Ifthe JetPt's have to be extracted from the xAOD's, then that must occur.

M df = await df_future.future_value(executor=lambda a: use_exe_func_adl_server(a, node=endpoint))

And plot the pr

M plt.hist(df.JetPt, bins=58,range=(8,200))
plt.xlabel('Jet p_T [GeV]')
plt.show()

120000

100000

100 125 150 175 200
Jet pr[GeV]

(o1403S/MN) SHOM O

https://github.com/gordonwatts/func_adl_binder

Design

0
=
Q
]
7
&
=
S~
w
o)
Q
=1
£

\

RabbitMQ

i

‘ (cache)
Used a desktop docker version of Kubernetes

Helm chart + simple tests

https://github.com/gordonwatts/func_adl_server/tree/master/notebooks

Good

Dogfooding: Analysis Plots Notebook

N) SHOM 'O

LLP Analysis Per-Jet Training Set
57 MC Datasets (~3 TB of files)
~200 M eventse

20 Minutes to extract 25 ‘_
columns on a core i5 single
machine (5 yrs old)

Compressed columns: 2 GB

In core memory: ~8-10 GB

“multiuser”

"hhhhhhu@#iii;+i

10007275 1000475

So little python code for plots with a huge amount of information!

https://github.com/gordonwatts/calratio-perjet-training/blob/master/notebooks/Input%20Variable%20Plots.ipynb

= o

Simple physics example:

« Fetch electrons in each event
« Use the first two to form a mass
 Plot

(SH403S/MN) SHOM "D

Jupyvyier Notebook

« /0 GB dataset

« Takes about a minute for
a single process to run
through all these files.

« But without cuts, takes @
long time before the data
is fransferred!! (not on
binder)

https://github.com/gordonwatts/func_adl_electrons/blob/master/ElectronData.ipynb

Caching

(81403S/)MN) SHOM O

func_adl Server on

Kubernetes

Remote Cluster Local Machine
(docker container)

| restart my Jupyter kernel 4-10 times a day, depending...

Running the Server

« K8 and helm charts means | could
run a multi-container application
without hand art.

« Crucial to be able to run the
complete server on my laptop

« And desktop
 And server
 Ran in production in all three

locations af various fimes | think this is the way we will

* Rabbit MQ T deploy even on our laptops
« We should at least be familiar with

these tools

©
=
Q
]
73
&
2
S~
(
o)
Q
=
£

(you have to pass in certificates for full functionality)

https://github.com/gordonwatts/func_adl_server/tree/master/notebooks

Query

Caches Data Locally
« No waiting on cache for small repeated queries

Python isn't the best language
* Not designed to deal with
streams of data without
modification

©
=
Q
]
73
&
2
S~
wm
o)
Q
=
£

Query is uniquely hashed
« Lookup is just a re-query

Output is ROOT
* Pretty much everything can read it
* Need it for all systems in the future

Python Async is a mess
» Buy you can run 57 requests at
once with very little work.

Cache is hard
« Keeping robust interactions when laptop is closed, open, looses wifi is hard!
» Lots of bugs

@
=
Q
Q
o
=
=3
S~
w
D
Q
=
25

