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Introduction
• Top quark : 

• heaviest elementary particle discovered so far
• large Yukawa coupling to Higgs boson

• Top quarks pairs production @ the LHC dominated 
by gluon fusion (~90%) → allows to:
• constrain gluon PDF
• extract αS, mt

• Decay channels:
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BR increases..            but background too!

dilepton lepton+jets full hadronic



Why top quark is so special?
• Ideal candidate for spin 

measurements:
• extremely short lifetime → decays 

before forming bound states
• spin information preserved in the 

angular distribution of its decay products
• top spin observables (expected to be) 

well predicted by perturbative QCD

• Top spin measurements = powerful 
probe of new physics in ttbar 
production: 
• new mediator would change spin 

structure
• sensitive to most dim-6 EFT operators
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• In SM, ttbar production ~ unpolarized 
but top spins strongly correlated → 
rich structure of spin 
correlations



Goal of analysis
• Measurement of all the independent coefficients of                                 

the spin-dependent parts of the ttbar production       
density matrix in dilepton channel 

• Squared matrix element for ttbar production and decay:

  

•   = decay density matrices for top and anti-top
• R = spin density matrix related to on-shell ttbar production

• can be decomposed into t and tbar spin dependent parts          
using a basis of Pauli matrices:  

                          

•   = constant characterizing spin-averaged production cross-
section at parton level

•   = 3-vectors characterizing the degree of top quark/antiquark 
polarization along each axis

•   = 3x3 matrix characterizing the spin correlation between the 
top quarks and antiquarks for each pair of axes

|ℳ(gg/qq̄ → tt̄ → (bℓ+νℓ)(b̄ℓ−ν̄ℓ)) |2 ∼ Tr[ρRρ̄]

ρ/ρ̄

R ∝ Ã1 ⊗ 1 + B̃+
i σi ⊗ 1 + B̃−

i 1 ⊗ σi + C̃ijσi ⊗ σ j

Ã

B̃±

C̃
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as described in 
Bernreuther et. al. 
[JHEP12(2015)026]



Basis of spin quantization axes
• B and C coefficients: 

• functions of   and of the top quark scattering 
angle

• written in terms of orthonormal basis { ,  ,  }:
• helicity  -axis: top quark direction in ttbar rest 

frame 
• transverse  -axis: transverse to production 

(ttbar scattering) plane 

  

•  -axis: orthogonal to the other 2 axes (normal 
to k in ttbar scattering plane)

  

•   = direction of the incoming parton, i.e. 
direction of the proton beam (z-direction in  
the laboratory frame)

•   = top quark scattering angle in ttbar rest 
frame 

s

̂k ̂r ̂n
̂k

̂n

̂n =
sign(cosΘ)

sinΘ
( ̂p × ̂k)

̂r

̂r =
sign(cosΘ)

sinΘ
( ̂p − ̂kcosΘ)

̂p

Θ

!7



Dilepton angular distribution
• Dilepton angular distribution probes top spin in 3 directions: 

  

• For many variables, simplified form:

 

• 3-vectors   and  = top and anti-top polarization coefficients w.r.t  
reference axis i, where i =  ,  ,                                                             
[plus modified axes   and   depending  on  ]

• 3x3 matrix   = diagonal spin correlation coefficients for axis i 

• Spin dependence of ttbar production completely characterized by   
15 coefficients, individually probed by measuring 1D angular distribution 
at parton level: 

 

1
σ

dσ
dcosθi

1dcosθi
2

=
1
4

(1 + Bi
1cosθi

1 + Bi
2cosθi

2 − Ciicosθi
1cosθi

2)

Bi
1 Bi

2
̂k ̂r ̂n

̂r* ̂k* sign( |yt | − |yt̄ | )
Cii
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Observables
• Single-differential cross sections yielded by a change of variable,                  if 

necessary, and by integrating out one of the angles:

•  for polarization 

•  for diagonal 

spin correlations

• Also measurements of: 
• sums and differences   for axes i, j

•   from  distribution 

(opening angle between the leptons in parent top rest frame)

•  

• lab-frame distributions   and  → for asymmetry  

→ 22 distribution in total… 
today focusing only on  ,  ,  ,  ,   and   

1
σ

dσ
dcosθi

1/2
=

1
2

(1 + Bi
1/2cosθi

1/2) →

1
σ

dσ
d(cosθi

1cosθi
2)

=
1
2

[1 − Cii(cosθi
1cosθi

2)]ln
1

|cosθi
1cosθi

2 |
→

Cij ± Cji

D =
−Tr[C]

3
=

−[Ckk + Crr + Cnn]
3

cosφ = ̂ℓ1 ⋅ ̂ℓ2

1
σ

dσ
dcosφ

=
1
2

(1 + Dcosφ)

̂ℓlab
1 ⋅ ̂ℓlab

2 |Δϕℓℓ | AΔϕℓℓ

Bk
1 Ckk Crr Cnn D AΔϕℓℓ
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Strategy
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• Analysis targets dilepton final states (~9% BR) of ttbar decays:

  

• Dilepton event selection 
• Kinematic reconstruction of ttbar system 

• 6 unknowns (neutrino momenta) constrained measuring ETmiss and 
assuming mt and mW

• Binned measurements of single differential cross-sections distributions
• Background subtraction and normalization 
• Optimised unfolding technique for dileptonic angular distributions 

(simultaneous unfolding of the distributions) based on TUnfold to 
correct for detector effects and acceptance 
• obtain parton-level, normalized differential cross-sections 

extrapolated to the full phase space 
• Extraction of the  , B, C, and D coefficients 

• Interpretations: comparison to SM simulation, EFT, SUSY
• compare data to BSM predictions and set limits

tt̄ → (bW+)(b̄W−) → (bℓ+νℓ)(b̄ℓ−ν̄ℓ)

AΔϕℓℓ



Signal and backgrounds
•  Signal:   

• 2 charged leptons (  or   or  ) originating 
from W boson decays, but not from tau decays 

• 2 jets originating from the hadronization of b-quarks 
(b-jets)

• large ETmiss from undetected neutrinos

• Main backgrounds: 
• ttbar events with leptonically decaying tau leptons 

(ttbar other)  ~13%
• single top quarks produced in association with a W 

boson (tW) ~3%
• Z/gamma∗ bosons produced with additional jets 

(Z+jets) ~4%
• estimated using data driven method (everything 

else using simulation)

• Other backgrounds (< 1%): 
• W boson production with additional jets (W+jets) 
• diboson events (WW, ZZ, WZ) 
• production of ttbar in association with W or Z   

boson (ttbar+W/Z)

• Reasonable data-MC agreement in general

tt̄ → (bW+)(b̄W−) → (bℓ+νℓ)(b̄ℓ−ν̄ℓ)
e+e− e±μ∓ μ+μ−
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CMS 2016 data    
@   TeV :

 fb-1

s = 13
ℒ = 35.9



Event selection & kinematic reco
• Selections of events based on :

• pT,  of electrons and jets
•  
•   

• Direct spin measurement requires 
reconstruction of ttbar system

• Neutrino momenta solved analytically using a 
geometric method using constraints from ETmiss, 
mt and mW:
• input: 2 highest-pt reconstructed jets, 2 

oppositely charged isolated leptons and missing 
transverse energy 

• fix top quark mass at 172.5 GeV and W mass 
at 80.4 GeV

• up to 8 solutions per event:
• choose most likely based on kinematics 
• choose closest approach between ETmiss and 

sum of neutrino pT

η
mll
Emiss

T
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>90% pure sample of dileptonic 
ttbar events after selection



Unfolding
• Two corrections needed to compare measured 

distribution to theoretical calculations:
• ”acceptance” (from fiducial region of detector 

with selection cuts to full phase space with no 
cuts)

• ”migration” (to account for differences 
between true and reconstructed quantities)

• Acceptance and migration corrections parametrized 
by matrices that act on measured bins: 
• measured bins x related to true bins y by:          

x = M A y
• equation to be inverted with “regularisation” to 

suppress statistical fluctuations:
• statistical extrapolation from fiducial phase 

space to full phase space 
• statistical fluctuations suppressed by 

regularizing the difference between the 
unfolded distribution and the gen-level MC 
distribution of measured bins with respect to 
the SM expectation
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Unfolding with TUnfold
• Measured distributions are of particularly simple form at parton-level, 

dependent on only the spin coefficient:

•  

•  

•  

• The curvature of the vector of measured bins with respect to the SM 
expectation is regularized in TUnfold 

• By multiplying the density by an appropriate factor before regularising (e.g. 
 ), the variation wrt the coefficient can be made exactly linear  
→ the regularization cannot bias the measured coefficient 
• it’s called “BinFactorFunction” in TUnfoldBinning

• 6 uniform bins used for each distribution, roughly matching the 
reconstruction resolution 
• narrower bins in the TUnfold   minimization sufficient to reduce the 

bin width bias to a negligible level

x = cosθi
1/2 ,

1
σ

dσ
dx

=
1
2

(1 + B1/2(i)x)

x = cosθi
1cosθ j

2 ,
1
σ

dσ
dx

=
1
2

(1 − Cijx)ln
1

|x |

x = cosθi
1cosθ j

2
± cosθ j

1cosθi
2 ,

1
σ

dσ
dx

=
1
2 (1 −

Cij ± Cji

2
x)cos−1 |x |

1/cos−1 |x |

χ2
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Systematics 
• Each source of systematic uncertainty represented by a covariance 

matrix for the bins of the measured differential cross sections
• Total systematic uncertainty derived from the sum of these 

covariance matrices
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Covariance matrices
• Covariance (or correlation) matrices derived for all 132 measured bins (6 bins 

for each of the 22 observables) at once 
• allowing constraints/fits to be made using simultaneously several measured 

differential cross sections  
• Largely statistically independent observables: 

• pattern of statistical correlation and anti-correlation among bins from same 
distribution arising from unfolding

• Much stronger systematics correlations: 
• pattern of positive and negative correlations reflects relative changes in 

shape of different distributions in response to systematic variations
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Results: polarizations
• Measured top quark polarization (6 B coefficients) consistent with zero for 

each axis: 
• measurements not yet sensitive to small level of polarization in the SM 
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SM NLO:   

Bk
1 = 0.005 ± 0.010 ± 0.021

0.004+0.0017
−0.0012

Dominant systematics: JES, b-quark 
fragmentation, and background



Results: spin correlations
• Distributions for the correlation of top spins along each axis (probing 

diagonal of C matrix)
• spin correlations consistent with SM expectations
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Dominant systematics: background and JES

  
SM NLO:   

Ckk = 0.30 ± 0.02 ± 0.03
0.33

  
SM NLO:   

Crr = 0.08 ± 0.02 ± 0.02
0.07

  
SM NLO:   

Cnn = 0.33 ± 0.01 ± 0.02
0.33



Results: spin correlations
• Opening angle between leptons   has maximal sensitivity to 

the degree of alignment of the top quark spins
• most precise single variable! 

cosφ = ̂ℓ1 ⋅ ̂ℓ2
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SM NLO:   

D = − 0.237 ± 0.007 ± 0.009
−0.243

Dominant systematics: background 
and top pT modeling



Indirect measurements

!20

• Direct measurement of spin correlations requires 
full reconstruction of t and tbar 

• Is it possible to also probe them indirectly with 
simple lab-frame variables?   
• ℓ± angular distributions = (1 ± cosθ)/2

• preferred lepton directions in the top rest 
frames determined by top spins → lepton       
3-momentum = good proxy for the top spin

• but leptons preferentially aligned 

→ angular correlation retained 
in lab frame ∆ϕ



Indirect measurements
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• Direct measurement of spin correlations requires 
full reconstruction of t and tbar 

• Is it possible to also probe them indirectly with 
simple lab-frame variables?   
• ℓ± angular distributions = (1 ± cosθ)/2
• angle between leptons in transverse plane (lab.):

  

• experimentally very precise for excellent 
resolution of lepton angles

• shape comes from top kinematics
• large ∆ϕ preferred because tops are     

produced back to back
• relative enhancement at low ∆ϕ due                

to spin correlations

|Δϕℓℓ | = |ϕl1 − ϕl2 | − π − π

Predicted ∆ϕ distribution in presence 
and absence of spin correlations



∆ϕ distribution
• “Unfolding”: distribution in data 

corrected for acceptance and 
migration between bins

• In ATLAS: 
• parton level, full phase space: 

• clear discrepancy between data 
and NLO simulations (~3σ)

• particle level, fiducial phase space
• discrepancy remains even in the 

fiducial phase space of the 
detector (reduced 
extrapolation)
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∆ϕ distribution
• “Unfolding”: distribution in data 

corrected for acceptance and 
migration between bins

• In ATLAS: 
• parton level, full phase space: 

• clear discrepancy between data 
and NLO simulations (~3σ)

• parton level, full phase space
• discrepancy remains even in the 

fiducial phase space of the 
detector (reduced 
extrapolation)

• In CMS (parton level): 
• smaller discrepancy is observed
• tensions between data and NLO 

simulation reduced when 
comparing to NNLO predictions
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Results: spin correlations
  

to measure  

|Δϕℓℓ | = |ϕl1 − ϕl2 | − π − π

AΔϕℓℓ
=

N( |Δϕℓℓ | > π/2) − N( |Δϕℓℓ | < π/2)
N( |Δϕℓℓ | > π/2) + N( |Δϕℓℓ | < π/2)
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Dominant systematics: ME-PS Matching 
and top pT modelling

  
SM NNLO:   

AΔϕℓℓ
= 0.103 ± 0.003 ± 0.007

0.115+0.005
−0.001



NNLO corrections to ∆ϕ
• NNLO calculations have been 

made both inclusively and in a 
fiducial region similar to that used 
by the experiments

• NNLO corrections are 
significantly larger in the fiducial 
phase space than in the full phase 
space → use NNLO corrections 
(instead of the NLO MC currently 
used) in the extrapolation to the 
full phase space

• Calculated fiducial region not 
identical to those used in the 
analyses, but a correction of this 
size would account for the 
residual discrepancy

!25

arxiv:1901.05407



Extraction of coefficients 
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• Coefficient extracted from corresponding normalized differential 
cross section combining the information from the measured bins to 
minimize its uncertainty



Top polarisation coefficients 
uncertainties
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Ttbar spin correlation coefficients 
uncertainties

!28



Correlation matrices for 
coefficients
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• Coefficient largely statistically uncorrelated: 
• statistical correlations between D and the diagonal C coefficients, and the 2 

lab-frame observables
• Much stronger systematics correlations: 

• evident for polarization measurements and for coefficients with significant 
statistical correlations



Polarisation coefficient summary 
plots
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Spin correlation coefficient 
summary plots
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• All direct spin correlation measurements in close agreement with SM predictions



Off-diagonal spin correlation 
coefficient summary plots
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• Only 2 of the off-diagonal elements of the matrix C are not small in the SM
• first 3σ evidence for spin correlation between r and k axes



Combination of B coefficients 
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• Sums and differences of B coefficients: 
• corresponding to the CP-even and CP-odd components of the 

polarization



Extraction of fSM 
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• fSM = strength of the measured spin correlation relative to the SM 
prediction 
• fSM = 1 for SM, fSM = 0 for uncorrelated events
• values derived using the measured coefficients and NLO 

calculations
• allows easy comparison of results between different variables 

(and between different experiments)

D coefficient: 
most precise 

measurement to 
date (5% 

uncertainty)



fSM summary plot

!35



EFT interpretation
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• The measured coefficients probe most of the lowest-order EFT 
operators relevant to the LHC ttbar production

• Several models of BSM physics predict an anomalous top 
quark Chromo-Magnetic Dipole Moment (CMDM) 
• induces top chirality flips affecting spin structure and 

kinematic properties of ttbar events
• Initial focus on the top quark anomalous CMDM: 

• set 95% CL limits on EFT operator   
• from simultaneous fit to measured differential cross 

sections
• through its Wilson coefficient   

• with   TeV
• [will be referred to as just  ]

𝒪tG

CtG /Λ2
EFT

ΛEFT = 1
CtG



The   operator𝒪tG
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• Models top chromomagnetic dipole moment:  

  

• Modifies the gttbar vertex
• Adds the ggttbar vertex
• Induces top chirality flip and altered kinematic properties in ttbar 

production → ttbar spin density matrix = powerful probe of top 
quark CMDM to be used to test BSM physics

𝒪tG = ytgs(Q̄σμνTAt)ϕ̃GA
μν



Procedure
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• Templates for predictions made with RIVET framework: 
• theoretical uncertainties estimated through scale variations 

•   minimization technique to constrain   Wilson coefficient 
of CMDM operator:

 

•  measured - predicted normalized differential cross section 
in bin i/j

•   = (i,j) element of the inverted covariance matrix 
of data

•   confidence intervals determined by   wrt best 
fit value

• Used 20 measured normalized differential distributions and 
covariance matrices:
• lab frame variables excluded due to large theoretical 

uncertainties

χ2 CtG /Λ2

χ2(CtG /Λ2) = ΣN
i=1Σ

N
j=1Δi × Δj × Mij

Δ =

Mij = Cov−1
i,j

1σ(2σ) Δχ2 < 1(4)



Results - shape fit
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• Best fit value: 

 TeV-2

• Shape fit results in 55% tighter   
constraint wrt best result so far 
(from CMS-TOP-17-014)

 TeV-2

• Impact of theoretical uncertainties 
is small

• 95% confidence level limits on 
  from simultaneous fit to 
measured differential cross 
sections: 

 TeV-2

CtG /Λ2 = 0.04+0.12
−0.11

CtG /Λ2 = 0.18+0.23
−0.24

CtG /Λ2

−0.07 < CtG /Λ2 < 0.16

Strongest direct 
constraint to date! 



Results - sensitivity evolution
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• Sensitivity evolution as variables are added 
• From the left, iteratively fit a fixed number of variables

• choose the combination with tightest constraint
• Most information in D, with others helping through correlations



SUSY interpretation
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• In SUSY light stops quarks likely to decay as   :

•   rate   rate for   
• When daughter top produced at rest ( ): 

•   events look similar to uncorrelated   events, visible in 
lepton ∆ϕ 

• Scalar production typically more central, translates to lepton ∆η 
• Use double-differential distribution in ∆ϕ and ∆η and total rate to 

set limits

t̃ → tχ̃0
1

t̃ t̃* < 1/6 tt̄ mt̃ > mt
Δm ∼ mt

t̃ t̃* tt̄

• In ATLAS, excluded regions 
near and below   line: 
•   GeV

•   GeV

Δm = mt
mt < mt̃ < 230
mχ̃0

1
< 60

New results from 
CMS coming soon! 



Summary
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• First direct measurements at 13 TeV of all spin-dependent 
coefficients of the ttbar production density matrix: 
• in close agreement with SM predictions

• Tension between measured ∆ϕ distributions and the NLO MC 
predictions:
• likely explained by missing higher order corrections to top kinematics, 

which become more important in the fiducial phase space accessible to 
the experiments

• Precision top quark spin measurements are a powerful probe of new 
physics in ttbar production: 
• EFT Interpretation: sensitive to 10 out of the 11 independent 

dimension-6 operators relevant for hadronic ttbar production 
• simultaneous fit to set stringent constraints (55% tighter wrt 

previous results) on top quark anomalous CMDM operator 
coefficient  

• SUSY Interpretation: limits on light stop squark production
• work ongoing.. stay tuned! 

CtG



Backup
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Detector-level distributions
• Set of 22 reco-level distributions are shown on the following slides.

• Systematics are shown by hatched band. 
• Reasonable data-MC agreement in general.
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Top polarization observables 
(combined channel)
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Top polarization observables 
(combined channel)
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Ttbar spin correlation observables 
(combined channel)
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Ttbar spin correlation observables 
(combined channel)

!48



Unfolding to parton level
• To compare with fixed-order theoretical calculations, must correct to 

parton-level
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Unfolding to particle level
• To reduce the model-dependence, we can unfold to particle-level and 

minimize the acceptance extrapolation
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Results
• We measure 22 normalised differential cross sections:
• 10 cos θ distributions for the B i 
• 3 cos θ cos θ distributions for the Cii 
• 6 cos θ cos θ ± cos θ cos θ distributions for the C ij ± Cji 
• 2 laboratory frame dilepton angular distributions
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Unfolded top polarization 
distributions 

• Distributions in data consistent with flatness (non significant non-
zero B)
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Unfolded top polarization 
distributions 

• Data are compared with simulation and NLO calculation.
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Unfolded ttbar spin correlation 
distributions 

• SM prediction with spin correlations describes data for top rest-
frame observables

• Lab-frame distributions less well modelled, but NNLO correction 
large for deltaPhi_ll
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Unfolded ttbar spin correlation 
distributions 

• We can see the off-diagonal spin correlations between the r and k 
axes!
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