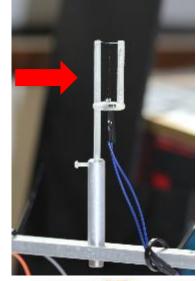
MAPIC Multichannel Analysis and wireless DAQ for the APIC


Ryan Griffiths, summer student project, CERN GDD lab, July –Aug 2019 supervisors Hans Muller, Dorothea Pfeiffer, Eraldo Oliveri.

8/20/2019

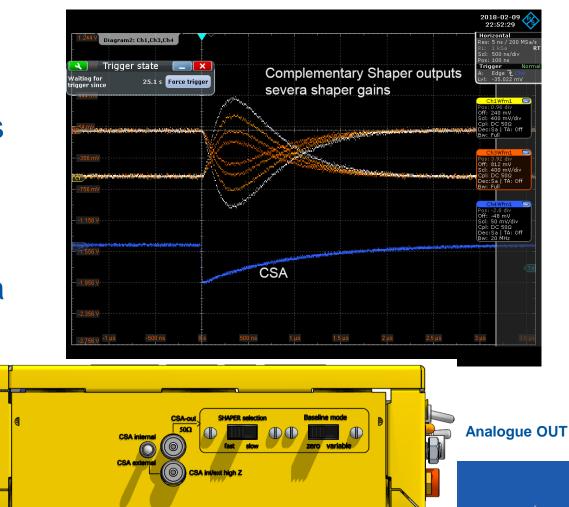
My Background

- Summer student in the CERN GDD lab.
- Going into 4th year of physics degree at Durham University, UK.
- Background in microcontrollers, instrumentation and optics.
- Working on software and data analysis for the MAPIC project.

Meadowlark: ://www.meadowlark.com/linear-series-spatiallight-modulator-p-121?mid=18

Motivation

- We want to add a multi channel analyser (MCA) function to the APIC.
- I.E we want to measure the voltage of output pulses from the APIC and produce a histogram.
- We want to do this more cheaply than commercial MCA (\$4000)
- We want to implement wireless DAQ and control.

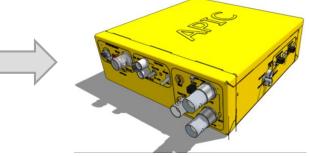

APIC

- The APIC box contains a preamplifier and shaper.
- Amplifies and shapes weak input pulse into a semi-gaussian.

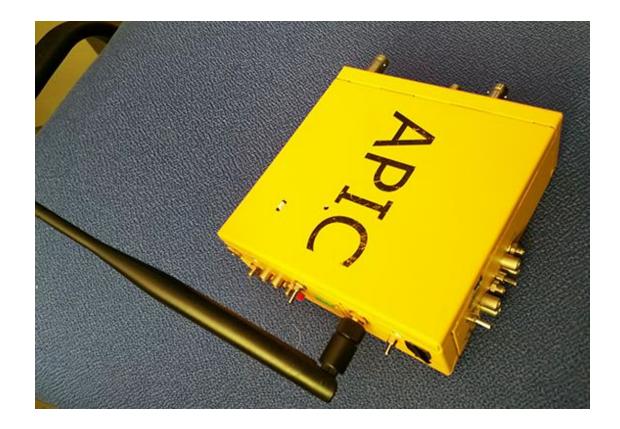
0

0

Detector IN



APIC V4.x contains the essential subset of a bunch of NIM modules
 plus an external an CSA pre-amplifer


 +
 plus autonomous power from a Lithium Battery
 +
 plus a charge controller for small solar panels

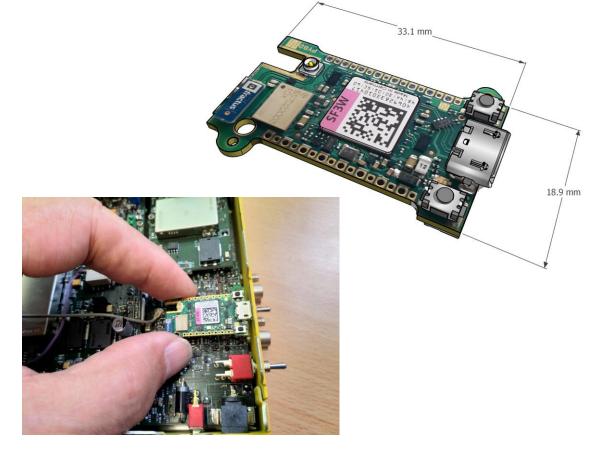
NEW addition 2019: Wifi - MCA

APIC shaper signal (input to pulse stretcher)

APIC Plugin:

Peak stretcher board,

Stretch peaks from the APIC so that they can be sampled with slow ADC (~1MSps) + averaged.



Pulse stretcher flat top output 15 us (to SAR ADC input)

Python card. "Pyboard D"

- WiFi 100 Mbps and USB Phy.
- Coax Antenna plug
- Three **12 bit** SAR ADCs, at **2 MSps.**

Test Sources for DAQ

(1) Photodiode

(2) Internal APIC Test Pulses

Regular pulses, all with charge of 1 million electrons.

Can change gain + frequency.

(3) GEM Detector

Pickup charge from bottom plate. Adjust APIC gain + calibrate stretcher.

Photodiode ! with quartz window, it is sensitive to alpha particles. Functions as a pin diode.

Transmit via Wi-Fi
> and plot histogram
on laptop.

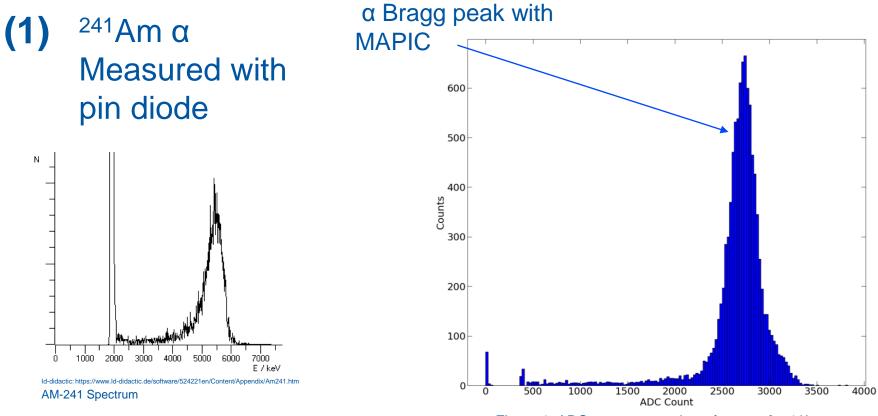
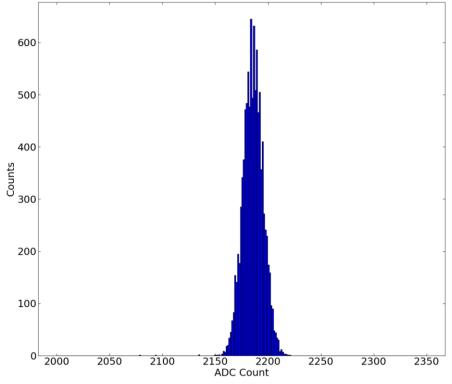


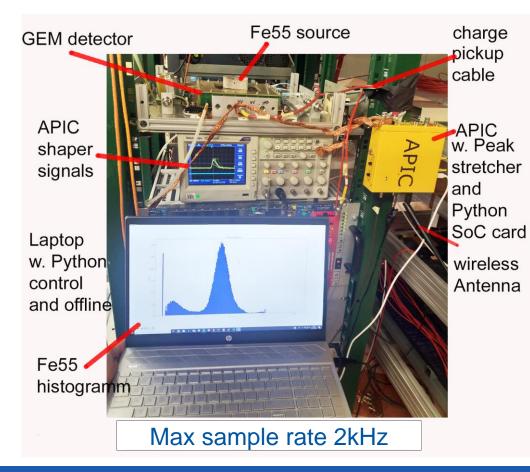
Figure 1: ADC count vs number of counts for 10k samples of ²⁴¹Am with pin diode.

8/20/2019

(2) APIC Internal Test Pulses

Select either positive or negative input polarity.




Figure 2: ADC count vs number of counts for 10k samples the internal test pulses.

8/20/2019

⁵⁵Fe GEM Setup

- Want to measure energy spectrum of ⁵⁵Fe radioactive isotope.
- We should see two peaks, main peak (5.9keV) and escape peak (2.9keV) in 2:1 ratio of energies.
- Calibrate ADU to energies.

(3) ⁵⁵Fe Spectrum

100,000 samples at a rate of 2kHz. Large number of samples cut into overflow.

What would we expect: Ahmed, Z. et al. JINST 9 (2014) no.01, P01009 arXiv:1307.6154 25005.89 keV Mn K arrays 2000 Counts in 0.33 mV bins 1500 1000 ~2.9 keV Ar escape peak 500 6.49 keV Mn K o x-rays 0.05 0.15 0.2 0.25 0 0.1Pulse height [V]

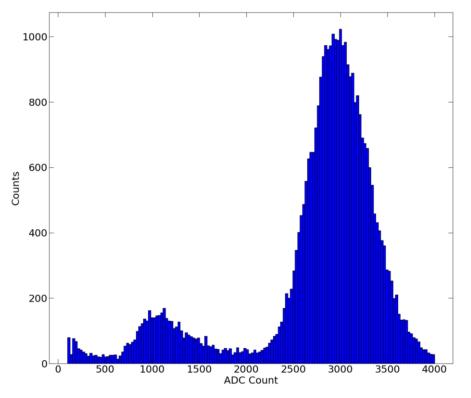
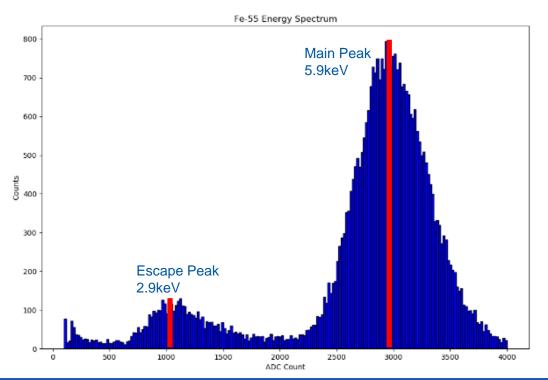



Figure 3: ADC count vs number of counts for ⁵⁵Fe measured with GEM detector.

Calibration

Peak ratio not 2:1

3000:1100

As mentioned before – we need a linearity calibration to find offset.

💀 MIT License 🛛 🗢 190 Commits 🦞 2 Branches 🔗 1 Tag 🕒 410 KB Files

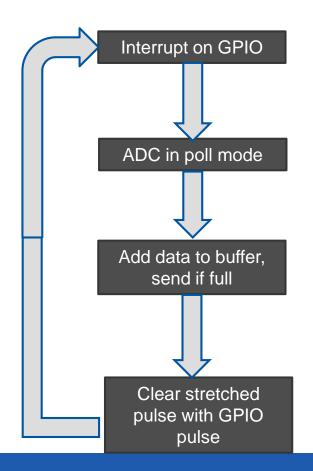
GDD MAPIC DAQ project. A GUI interface to a pyboard D, providing DAQ protocols for measuring radiation spectra from a variety of detectors and histogramming the results.

master v dapic	/ + •	History Q Find file	Web IDE 🛛 🗣 👻	
Changed variable name Ryan Michael Griffiths au			09872838	
README Add CHANGELOG Add CONTRIBUTING Enable Auto DevOps Add Kubernetes cluster Set up CI/CD				
Name	Last commit		Last update	
extension	UDP send function, pass custom tuple ip		3 days ago	
gitignore	Added default units to config file		2 days ago	
APICconfig.json	Added new saveable features for GUI.		2 days ago	
APICfns.py	Optimised some functions and added vars for saving.		2 days ago	
LICENSE	Add LICENSE		1 month ago	
README.md	Developer instructions in readme expanded.		3 days ago	
🖹 gui.py	Raw data savemode control, added new frame for savetools.		1 day ago	
🖹 main.py	Changed variable names.		20 hours ago	

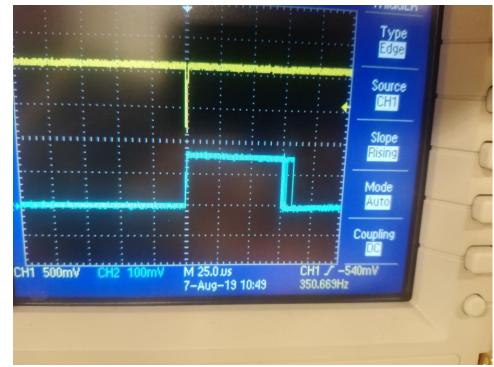
GITLAB REPO FEATURES

- Readme instructions.
- GUI control of APIC.
- Saving experimental setup.
- Wireless control of the APIC & readout.
- Histogram data processing on PC side.

Software Tools


On The Pyboard

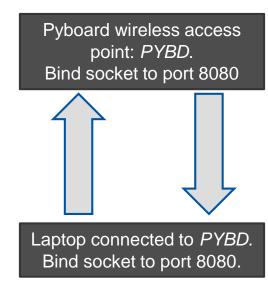
- Micropython language.
- IwIP network sockets Wi-Fi data streaming.
- STM32 HAL Drivers extend Micropython.
 On The PC
- Python Tkinter GUI control.
- Python Matplotlib + NumPy for data processing.
- Python network sockets.


ADC Datalogging in MP

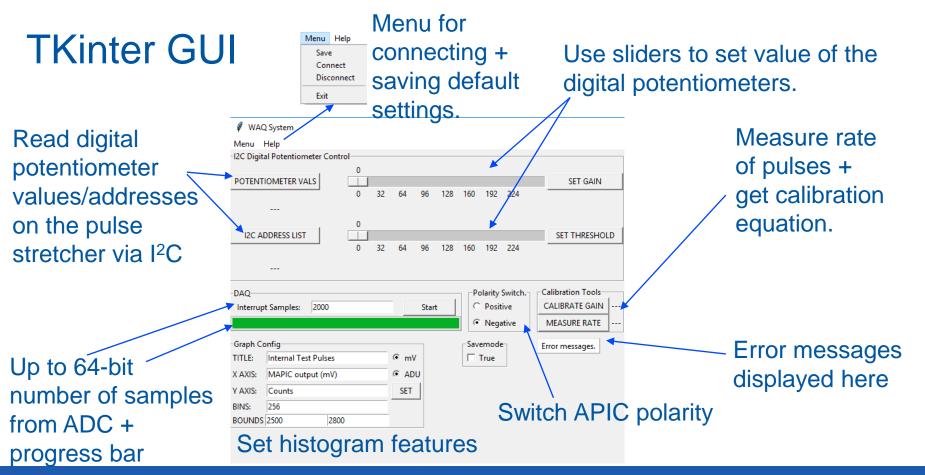
- Requires 3 pins and takes approximately 75us for 4us of ADC data!
- Sampling queue can overflow runtime error.
- Limits performance to 1 2kHz sampling rate.

Sampling in action

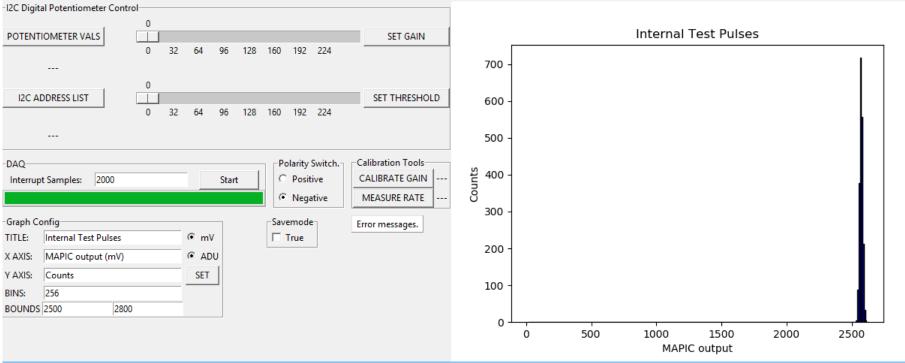
8/20/2019


C Optimisation – HAL Analog Watchdog

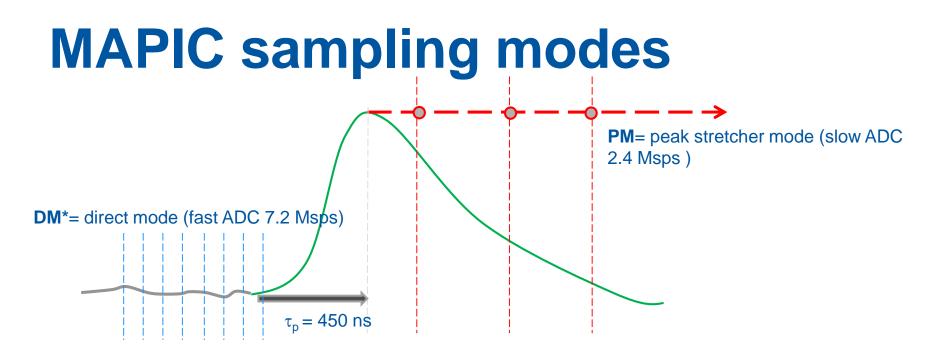
- Watchdog constantly monitors ADC values.
- When outside of a threshold, generate an interrupt, peak occurred. Sample peak.
- Could improve 75us peak to around 10us!
 Possible to reach 100kHz rate.
- Also only uses ADC pin, simpler hardware needs.


Wireless Readout

- Performance up to 80Mb/s, fast data readout over Wi-Fi.
- Much faster than 8Mbps USB.
- Range of a couple of meters with only antenna, can be increased with a repeater.



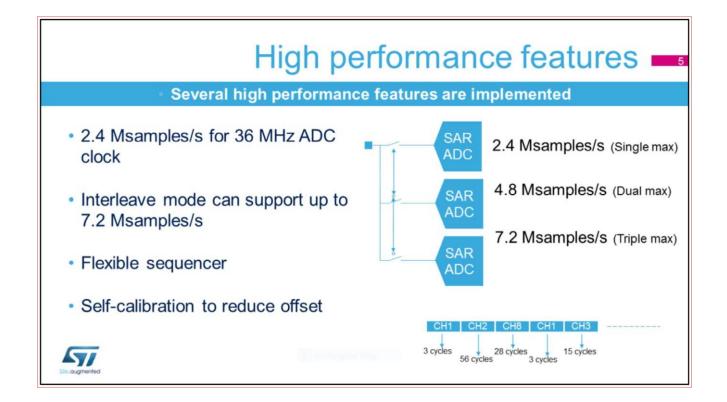
WAQ System


Main Tasks and ToDo list

Complete analog watchdog code.

 Calibrate the stretcher gain/offset to achieve correct ⁵⁵Fe spectrum.

• Configure the three ADCs in triple interleaved mode to increase sampling time to 200ns?



Noise and baseline measurements

Charge and timing measurements

DM mode currently "in the works"

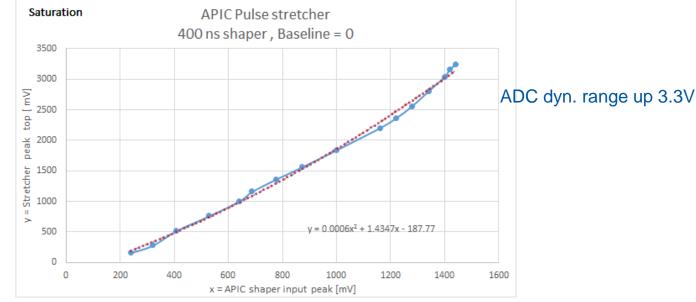
Conclusion

- Successfully implemented readout and APIC control over Wi-Fi.
- Functional Tkinter GUI with useful features.
- Close to implementing high performance C code to increase sample rate limit from 2kHz to ~100kHz.

Acknowledgements

I would like to thank my supervisors:

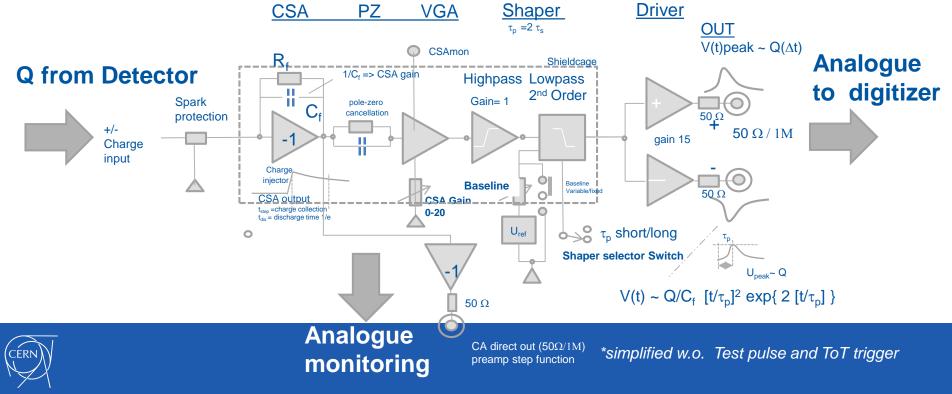
Hans Muller, Dorothea Pfeiffer and Eraldo Oliveri.



MAPIC Multichannel Analysis and wireless DAQ for the APIC

Extra Information

Transfer characteristics peak stretcher card V1.1



quasi linear Y = 1.43 X – 187.8 For final peak stretcher implementation:

- refine linearity
- reduce 187.77 mV input pulse offset
- measure transfers function for all gain

Auto-Cal function in final SW version Pre-measurement of transfer curve

APIC preamplifier-shaper chain*

APIC feature summary

1x	built-in CSA preamplifier with spark protection	1x variable gain amplifier
	 default trimmer set to 1mV/fC, 1us decay 	- CSA -> shaper gain 0 – 20 via 15-turn po
	- triple-spark-filter << 1nA leak	- Gain Monitor Voltage plug (2mm Banana)
3x	AC/DC input coupling modes	2x shaper outputs
	- direct DC, AC up 4 kV via slide switch: 360pF /4.7nF	- complementary up +/- 1V 50 Ω , +/- 2V 1N - 150 mV variable baseline +/-
1x (detector Bias plug to detector - LRC filtered via SHV connector to AC input	1x dual polarity discriminator -> trigger generator - Trigger via 15- turn discriminator over +/-C
1x	direct CSA output	- TOT and TBT threshold over CSA signal s
	- direct CSA output up +/- $1.1V 1M\Omega$, +/- $2.2V 50 \Omega$ - output polarity = input charge - internal Pole-Z trimmer (pre-adjusted)	4 x Trigger LEDs: charge polarity and discriminator lock - red/blue : +/- input signal polarity level i - orange/green: +/- TOT or TBT trigger
1x	input for an external CSA preamplifier (SIPA)	1x complementary 50 Ω NIM trigger output
	- internal CSA disabled, adjust internal Pole-Z	- TOT time-over-threshold (prompt, short) N - TBT time below threshold (prompt, short) N
trimmer		1x 50 Ω NIM trigger pulse stretcher output*
	- Signal input 50 Ohm Lemo-00, power cable Jack	- 50ns-500ns out via 15- turn trimmer
1x	testpulse generator 50 Ω LVTTL / NIM , 1M TLL	1 x classic audible beep
	 permanent or single toggle with LED variable rate 1Hz1 kHz via 15-turn potentiometer 	- audible beep from stretched NIM triggers 1 x 50 Ω -input for 3 selectable output functions (NIM 50 Ω)
1x	test charge injector testpulse	 Input pulse stretching only*
	- 200ps neg / 700ps pos. int. test pulse 1.4V via	 input gated with TOT trigger, stretched input gated with TBT trigger, stretched
	25pF	1x optional HV bias generator (for Si Diodes)
2X	shapers -slide switches: 2 shapers, baseline zero/variable	- 10V-100V low noise , temp. stable via 15 t

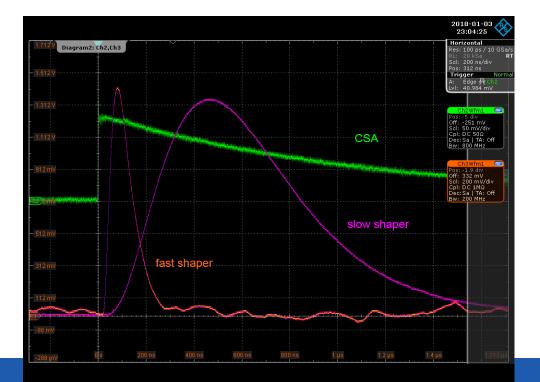
-Gamma-2 shape, default: t_{p.fast}= 30ns, t_{p.slow} =350ns

- 10V-100V low noise, temp. stable via 15 turn pot. stretch prompt TOT/TBT triggers by connecting an external coax cable to input

- CSA -> shaper gain 0 - 20 via 15-turn potentiometer

- Trigger via 15- turn discriminator over +/-CSA polarity

- complementary up +/- 1V 50 Ω , +/- 2V 1M Ω


- TOT and TBT threshold over CSA signal slope

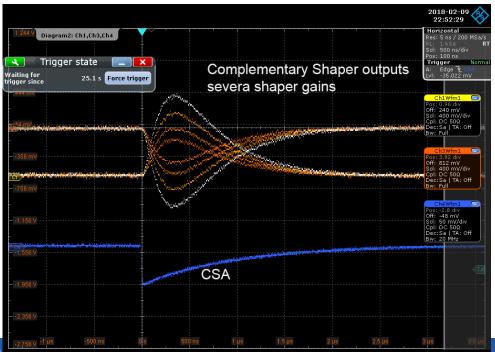
- red/blue : +/- input signal polarity level in range - orange/green: +/- TOT or TBT trigger locked

- TOT time-over-threshold (prompt, short) NIM signal - TBT time below threshold (prompt, short) NIM signal

Relative shaper CSA amplitudes

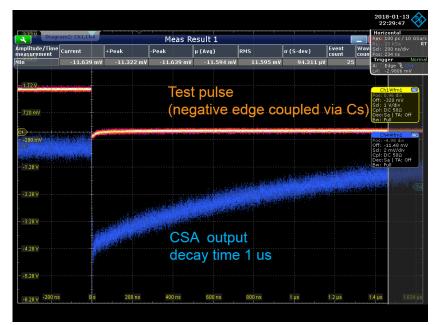
The slide-switch selections (fast/slow) result in fast or slow peaking times (default 25 ns/400ns) of approximately equal amplitudes*.

The fast shaper selection applies to high-rate, low capacitance detectors with average rates up to 1 MHz.


The slow shaper selection applies to low noise measurements of detectors up to $C_{det} \sim 1 \text{ nF}$

* Can be tuned on request to +/-2% equality

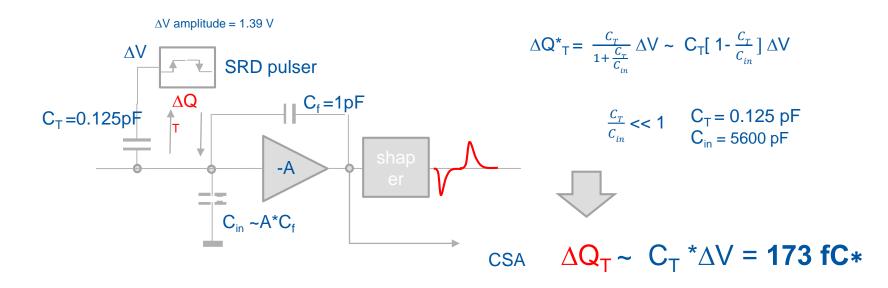
Complementary shaper outputs


The 2 shaper outputs are complementary with a common gain control. The non-inverted output has the same polarity as the input charge. Also the CSA output has the same polarity as the

input charge.

APIC test pulse

CSA preamplifier response to test charge



Picosec test charge

APIC test pulser charge calculation

