

Group meeting

16.08.19

Fabian

The explanation: The CTR measurement sees the signal of the entire bunch (marked red), the fft used just a lineout (green). Specially at negative gradients, where almost all protons are defocused, this can lead to discrepancies between both measurements:

The explanation: The CTR measurement sees the signal of the entire bunch (marked red), the fft used just a lineout (green). Specially at negative gradients, where almost all protons are defocused, this can lead to discrepancies between both measurements:

- 0.5%/m gradient:

FFT from lineout

Frequencies do not match!

FFT from full range

Frequencies match!

The explanation: The CTR measurement sees the signal of the entire bunch (marked red), the fft used just a lineout (green). Specially at negative gradients, where almost all protons are defocused, this can lead to discrepancies between both measurements:

- 2%/m gradient:

The explanation: The CTR measurement sees the signal of the entire bunch (marked red), the fft used just a lineout (green). Specially at negative gradients, where almost all protons are defocused, this can lead to discrepancies between both measurements:

+ 0.4 %/m gradient: no difference!

FFT from lineout 1200 **FFT CTR** 1000 800 Amplitude (a.u.) 200 0 <u></u> ∟ 1.14 1.16 1.18 1.2 1.22 1.24 1.26 $\times 10^{11}$ f (Hz)

FFT from full range 900 **FFT CTR** 800 700 Amplitude (a.u.) 000 000 000 000 200 100 1.22 1.24 1.26 1.14 1.16 1.18 1.2 1.28 $\times 10^{11}\,$ f(Hz)

Frequencies match!

Frequencies match!

New f plot using the full range

The new plot shows as well a plateau at low gradients

Before:

New comparison:

Better agreement! Need exact values!

For + 1.3%/m:

CTR seems to be off, but within error?

