

Production of hadronic resonances measured with ALICE at the LHC

Jihye Song for the ALICE Collaboration University of Houston

The 36th Winter Workshop on Nuclear Dynamics 1-7 March 2020

Outline

-ALICE

- Motivation
- ALICE detector
- Results in pp, p-Pb, Xe-Xe and Pb-Pb collisions
 - spectra
 - integrated yield and mean $p_{\rm T}$
 - particle ratios
- Nuclear modification factors
- Reconstruction of Ξ(1820)
- Summary

<image><image><image>

Motivation

Resonances have different short lifetimes similar to Hadronic phase

 allows the study of properties of hadronic phase in terms of
 regeneration and re-scattering effects

Regeneration: pseudo-elastic scattering of decay products

→ *Enhanced* yield

Re-scattering: resonance decay products undergo elastic scattering or pseudoelastic scattering through a different resonance state

- → Not reconstructed through invariant mass
- → **Reduced** yield

Resonances in ALICE

	Resonance	τ(fm/c)	Decay	BR					
	ρ(770) ⁰	1.3	ππ	100					
	K*(892) ⁰	4.2	Κπ	66.6	Year				
	Σ(1385) ±	5.5	Λπ	87					
	Ξ(1820)±	8.1	٨K	unknown	√SNN IT⊖VI				
	Λ(1520)	12.6	рK	22.5					
	Ξ(1530) ⁰	21.7	Ξπ	66.7					
	ϕ (1020)	46.4	KK	49.2					
	LŅ								
Jih	4								

	Pb-Pb	Xe-Xe	p-Pb	рр	
Year	2010-2011 2015,2018	2017	2013 2016	2009-2013 2015-2018	
√s _{NN} [TeV]	2.76 5.02	5.44	5.02 8.16	0.9, 2.76, 7, 8, 5.02, 13	

- Inner Tracking System (ITS)
 - Silicon detectors
 - Trigger, tracking, vertex, PID (dE/dx)
- Time Projection Chamber (**TPC**)
 - Gas-filled ionization detector
 - Tracking, vertex, PID (dE/dx)
- Time Of Flight (TOF)
 - PID through particle time of flight
- V0A and V0C
 - Trigger, centrality/multiplicity estimator

p_T-spectra in pp and p-Pb collisions

- Evolution of the spectral shape with increasing multiplicity for $p_T < 5$ GeV/c
- The spectral shape is similar across multiplicity for $p_T>5$ GeV/c

Jihye Song

p_T-spectra in Pb-Pb collisions

ALICE

p_T-spectra in Pb-Pb collisions

K*(892)⁰

φ(1020)

ALICE

• Hardening of particle spectra from peripheral to central collisions

p_T-spectra in Xe-Xe collisions

• p_T -spectra measured in Xe-Xe collisions

Integrated yield (dN/dy)

- dN/dy increases with increasing multiplicity
- K*0: described by EPOS-LHC and PYTHIA8 without color reconnection
- φ: slightly overestimated by EPOS-LHC and underestimated by PYTHIA tunes
 Jihye Song
 arXiv:1910.14397

Integrated yield (dN/dy)

Integrated yield normalized to <dN_{ch}/dη> for K*⁰ and φ
 independent of collision energy and systems for pp and p-Pb collisions

mean pt

- $\langle p_T \rangle$ values in pp collisions at $\sqrt{s} = 7$ TeV and 13 TeV follow approximately the same trend and rise faster as a function of $\langle dN_{ch}/d\eta \rangle$ than in p-Pb collisions
- (*p*_T) values predicted by EPOS-LHC are consistent with the measured values for
 φ, but slightly below values for K*0

Jihye Song

arXiv:1910.14397

mean pt

ALI-DER-339322

- In central Pb-Pb collisions
 - similar $\langle p_{\rm T} \rangle$ for p, K*0 and ϕ have been observed
 - expected from hydrodynamics as they have similar masses
- In small collision systems

Jihye Song $\langle p_T \rangle$ increases more steeply and similarity of p, K*⁰ and ϕ is broken

mean pt

 (p_T) obtained from Pb-Pb and Xe-Xe collisions are in agreement with each other

Particle yield ratios

- Suppression of K*0/K in central heavy-ion collisions w.r.t. peripheral Pb-Pb, p-Pb and pp collisions
 - suggests K^{*0} **re-scattering** is dominant over **regeneration**
- Hint of suppression in small systems at high multiplicity
 hadronic phase also in small systems?
- No suppression of ϕ /K - due to larger ϕ lifetime

Lifetime(fm/*c*): $\rho(1.3) < \mathbf{K}^{*0}(4.2) < \Sigma^{*}(5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.2)$

Resonance to long-lived particle ratios

 ρ^0/π , K*0/K and A*/A in Pb-Pb: suppression in central Pb-Pb collisions indicates dominance of re-scattering over regeneration for short lived resonances

 Σ^*/Λ and Λ^*/Λ : flat in small systems and no energy dependence from RHIC to LHC

 Ξ^*/Ξ and ϕ/K : no significant centrality dependence across the different collision systems

In most cases EPOS3 with UrQMD describes the trend qualitatively

-- EPOS3 (UrQMD OFF)

Lifetime(fm/c): $\rho(1.3) < K^{*0}(4.2) < \Sigma^{*}(5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.2)$

- EPOS3

p_T-differential yield ratios

- At low *p*_T, K*0/K for central collisions are lower than peripheral (pp) collisions whereas φ/K are comparable within the uncertainties
 - K^{*0} yields are suppressed due to re-scattering in the hadronic phase
 - most effect on low momentum particles
- At intermediate p_T, ratios show greater enhancement for central Pb-Pb collisions than peripheral and pp collisions

Strangeness production

- Smooth evolution vs. multiplicity in pp, p-Pb, Xe-Xe and Pb-Pb collisions from different energies
- Strangeness enhancement increases with strangeness content

Strangeness production

- Smooth evolution vs. multiplicity in pp, p-Pb, Xe-Xe and Pb-Pb collisions from different energies
- Strangeness enhancement increases with strangeness content

Does ϕ behave as a non-strange or double strange particle?

Strangeness enhancement: ϕ

- φ/π (|S|=0)/(|S|=0)
 - large systems: described by thermal model
 - small systems: increase with multiplicity

Strangeness enhancement: ϕ

- φ/K (|S|=0)/(|S|=1)
 - flat or slightly increasing at lowest multiplicities
 - suggest ϕ behaves like a S \ge 1 particle

 Ξ/ϕ (|S|=2)/(|S|=0)

- increase for low multiplicity collisions
- fairly flat across wide multiplicity range

ALI-PUB-339048

Nuclear modification factor (RAA, RpPb)

Intermediate- p_T (2 < p_T < 8 GeV/c)

hint of mass ordering among mesons
higher *R*_{AA} values for proton (might be due to baryon-meson effect)

High-*p*⊤ (>8 GeV/c)

- similar **suppression** for different light flavor hadrons
- No flavor (u,d,s) dependence

Nuclear modification factor (RAA, Rppb)

Intermediate-*p***T(2 <** *p***T** < 8 GeV/*c***)** - **mass dependent** for strange baryons

High-*p*_T (>8 GeV/*c*)

- no suppression for different light flavor hadrons
- No flavor (u,d,s) dependence

Reconstruction of E(1820)

- First measurement of E(1820) from a collider experiment
- Calculation from FASTSUM Collaboration shows potential parity doubling

- signature of chiral symmetry restoration in heavy-ion collisions

- expected signal: mass shift, width broadening or change in yield ratio between $\Xi(1820)$ and $\Xi(1530)$

Conclusion

- ALICE has a measured comprehensive set of resonance particles
- mean p_T: steeper increase in small systems and similar (p_T) for p, K^{*0} and φ in central Pb-Pb collisions
- Normalized integrated yield: independent of collision energy and systems for pp and p-Pb collisions
- Particle yield ratios:

- suppression of short-lived resonances, ρ^0 , K^{*0}, Λ^* , has been observed in most central collisions w.r.t. small collision systems - no suppression observed for the longer-lived resonances, ϕ

- Hidden strange particle: ϕ has effective strangeness 1-2 units
- Nuclear modification factor: at high p_T suppression for Pb-Pb, no suppression in p-Pb collisions
- **Reconstruction of E(1820)**: first measurement and clear signal

Backup

Energy dependence: ϕ/K

- Flat behavior in wide range of energy (~10-10⁴ GeV)
- Increase for low energies due to canonical suppression - reproduced by statistical model calculation with strangeness correlation radius parameter $R_c = 2.2$ fm