QCD transition line from lattice simulations

Claudia Ratti

University of Houston

Collaborators: Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Ruben Kara, Sandor Katz, Paolo Parotto, Attila Pasztor, Kalman Szabo

S. Borsanyi et al., 2002.02821

Motivation

- Map the phase diagram of strongly interacting matter
- Locate the critical point
- Find it in experiments

Second Beam Energy Scan (BESII) at RHIC

- Running in 2019-2021
- 24 weeks of runs each year
- Beam Energies have been chosen to keep the μ_{B} step ~50 MeV
- Chemical potentials of interest: μ_{B} /T~1.5...4

Comparison of the facilities

Compilation by D. Cebra

CP=Critical Point OD= Onset of Deconfinement DHM=Dense Hadronic Matter Claudia Ratti **1988 – Andrea Statistica Community and American Community Community and American Community Advances**

How can lattice QCD support the experiments?

- Equation of state
	- Needed for hydrodynamic description of the QGP
- QCD phase diagram
	- Transition line at finite density
	- Constraints on the location of the critical point
- Fluctuations of conserved charges
	- Can be simulated on the lattice and measured in experiments
	- Can give information on the evolution of heavy-ion collisions
	- Can give information on the critical point

Lattice QCD

- Best first principle-tool to extract predictions for the theory of strong interactions in the non-perturbative regime
- Uncertainties:
	- Statistical: finite sample, error
	- Systematic: finite box size, unphysical quark masses
- Given enough computer power, uncertainties can be kept under control
- Results from different groups, adopting different discretizations, converge to consistent results
- Unprecedented level of accuracy in lattice data

Sign problem

The QCD path integral is computed by Monte Carlo algorithms which samples field configurations with a weight proportional to the exponential of the action

$$
Z(\mu_B, T) = \text{Tr}\left(e^{-\frac{H_{\text{QCD}} - \mu_B N_B}{T}}\right) = \int \mathcal{D}U e^{-S_G[U]} \det M[U, \mu_B]
$$

- $det M[\mu_B]$ complex \rightarrow Monte Carlo simulations are not feasible \Box
- We can rely on a few approximate methods, viable for small μ_B/T : \Box
	- **n** Taylor expansion of physical quantities around $\mu_B = 0$ (Bielefeld-Swansea collaboration 2002; R. Gavai, S. Gupta 2003)
	- Simulations at imaginary chemical potentials (plus analytic continuation)(Alford, Kapustin, Wilczek, 1999; de Forcrand, Philipsen, 2002; D'Elia, Lombardo 2003)

Methods

$$
\frac{T_c(\mu_B)}{T_c(\mu_B=0)} = 1 - \kappa_2 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^2 - \kappa_4 \left(\frac{\mu_B}{T_c(\mu_B)}\right)^4
$$

Two ways of extracting the phase transition line:

 \circ Taylor expansion of observables around $\mu_B=0$

 \circ Simulations at imaginary chemical potential $+$ analytical continuation

- Two choices for the other chemical potentials:
	- \circ $\mu_{\text{B}}\neq 0$, $\mu_{\text{S}}=\mu_{\text{Q}}=0$
	- \circ μ_s and μ_Q are functions of T and μ_B to match the experimental constraints:

 $\langle n_{\rm s} \rangle = 0$ $\langle n_{\rm o} \rangle = 0.4 \langle n_{\rm B} \rangle$

State of the art

- From direct simulations at $\mu_B=0$:
	- \circ T_c(μ_B =0)=(156.5±1.5) MeV
	- \circ K₂=0.012±0.004
	- \circ K₄=0.000±0.004

• Simulation landscape

The BNL-Bielefeld-CCNU effort focuses to this point

Common technique: [de Forcrand, Philipsen, deForcrand:2002hgr], [Bonati et al., Bonati:2015bha], [Cea et al., Cea:2015cya], [D'Elia et al., DElia:2016jqh], [Bonati et al., Bonati:2018nut]

Observables

• We consider the following observables:

$$
\langle \bar{\psi}\psi \rangle = -\left[\langle \bar{\psi}\psi \rangle_T - \langle \bar{\psi}\psi \rangle_0 \right] \frac{m_{\rm ud}}{f_\pi^4},
$$

$$
\chi = \left[\chi_T - \chi_0 \right] \frac{m_{\rm ud}^2}{f_\pi^4}, \quad \text{with}
$$

$$
\bar{\psi}\psi \rangle_{T,0} = \frac{T}{V} \frac{\partial \log Z}{\partial m_{\rm ud}} \quad \chi_{T,0} = \frac{T}{V} \frac{\partial^2 \log Z}{\partial m_{\rm ud}^2}
$$

- The peak height of the susceptibility indicates the strength of the transition
- The peak position in temperature serves as a definition for the chiral crossover temperature

Observables

• Plan:

- \circ Calculate these two observables at finite imaginary μ_B and finite temperature T
- O Use the shift of these observables as a function of imaginary μ_B to determine T_c, K₂ and K_4

Observables

- **Observation**
	- \circ When we plot the chiral susceptibility as a function of the chiral condensate, we observe a very weak chemical potential dependence

S. Borsanyi et al., 2002.02821

Procedure

- Find the peak in the curve x (<ψψ>) through a low-order polynomial fit for each N_t and imaginary μ_B. This yields $<\!\!{\rm \bar{\psi}}$ ψ $\!\!>_c$ $\overline{}$
- Use an interpolation of $\langle \overline{\psi}\psi\rangle(T)$ to convert $\langle \overline{\psi}\psi\rangle_c$ to T_c for each N_t and imaginary μ_B. \overline{a} \overline{a}
- Perform a fit of $T_c(N_t, Im\mu_B/T_c)$ to determine the coefficients K_2 and K_4
- This leads to $2^8 = 256$ independent analyses

Results

$$
T_c(LT = 4, \mu_B = 0) = 158.0 \pm 0.6 \text{ MeV}
$$

$$
\kappa_2 = 0.0153 \pm 0.0018 ,
$$

$$
\kappa_4 = 0.00032 \pm 0.00067
$$

Results

• Natural definition: second derivative of the susceptibility at T_c

$$
(\Delta T)^2 = -\chi(T_c) \left[\frac{d^2}{dT^2} \chi \right]_{T=T_c}^{-1}
$$

• This turns out to be noisy, so we replace it by σ, a proxy for ΔT defined as:

$$
\langle \psi \psi \rangle (T_c \pm \sigma/2) = \langle \psi \psi \rangle_c \pm \Delta \langle \bar{\psi} \psi \rangle /2
$$

with $\langle \bar{\psi} \psi \rangle_c = 0.285$ and $\Delta \langle \bar{\psi} \psi \rangle = 0.14$

The exact range is chosen such that σ coincides with ΔT at zero and imaginary μ_B.

Width of the transition

S. Borsanyi et al., 2002.02821

• Height of the peak of the chiral susceptibility at the crossover temperature: proxy for the strength of the crossover

Conclusions

- We obtained the most accurate results for the QCD transition line so far
- The curvature at $\mu_B=0$ is very small. Its NLO correction is compatible with zero
- The width of the phase transition remains constant up to μ_B ~300 MeV
- The strength of the phase transition remains constant up to $\mu_B \sim 300$ MeV
- We see no sign of criticality in the explored range

Backup slides

Number of analyzed configurations

Number of analyzed configurations

Number of analyzed configurations

