Flavour, Energy and System Size Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions from RHIC-BES to LHC Energies 36th Winter Workshop on Nuclear Dynamics – Puerto Vallarta, Jalisco

Fernando Antonio Flor

Gabrielle Olinger René Bellwied

University of Houston

March 3, 2020

Overview

- Motivation
 - Sequential Hadronization Evidence
- The FIST
- Collision Energy Dependence of Chemical Freeze-out Parameters in A-A collisions
- System Size dependence of Chemical Freeze-out Parameters at ALICE
 - □ Single Freeze-out Temperature (1CFO)
 - Multiple Freeze-out Temperatures (2CFO)
- Summary
- Cavalry

Alice Meets the Cheshire Cat

Figure: Carroll, Lewis (illustrated by John Tenniel), Alice's Adventures in Wonderland. McMillan LTD. 1865.

Sequential Hadronization Evidence: Susceptibilities

- Continuum extrapolated Lattice QCD χ_4/χ_2 results for light and strange quarks:
 - Depict different behaviors between light and strange quarks
 - Flavour-specific "kinks" at particular temperatures
 - Deviations of lattice curves coinciding with said kinks
 - Support flavour separation of characteristic temperatures
 - ~15 MeV higher for strange quarks
- Similar findings exist from Hadron Resonance Gas (HRG) Model Calculations
 - Event-by-event net particle multiplicity fluctuations
 - $\ \ \$ Via flavour specific χ_1/χ_2 ratios

Figure: R. Bellwied and WB Collab. 10.1103/PhysRevLett.111.202302

Sequential Hadronization Evidence: STAR

• HRG Model Calculations via flavour specific χ_1/χ_2 ratios

- Support energy dependent separation of freeze-out temperatures
- Phenomenological Evidence at STAR (AuAu 39 GeV):
 - Common T_{ch} when all particle species are fit
 - $_{-}$ T_{ch} "drops" by 15 20 MeV if only light-flavour particles are fit (π K p)

Figures: R. Bellwied et al. 10.1103/PhysRevC.99.034912 and STAR Collab. 10.1103/PhysRevC.96.044904

Sequential Hadronization Evidence: ALICE

Pseudo-critical temperature from Lattice QCD: 157 \pm 9 MeV [†]

Seems to coincide with single chemical freeze-out temperature at ALICE, $T_{ch} = 156 \pm 2$ MeV

- Apparent tension between strange and light baryons
 3σ effect in protons
 - ${\scriptstyle \Box}~-2\sigma$ effect in Ξ

Question at hand:

Does hadronization occur at the same temperature for all quark flavours?

Preliminary data for PbPb @ 5.02 TeV shows even greater tension.

Fernando A. Flor (fernando.flor@cern.ch)

VWND2020 – Puerto Vallarta, Jalisco (02.03.20) 5 / 22

Figure: ALICE Collab. 10.1016/j.nuclphysa.2017.12.004, [†] WB Collab. PLB (2015). 10.1016/j.physletb.2015.11.011

Sequential Strangeness Freeze-out: 2CFO Approach

- We model the idea of two chemical freeze-out (2CFO) temperatures
 - \Box Strangeness Freeze-Out (SFO) occurs before Light Freeze-Out (LFO) \ni $T_S > T_L$

Using a state-of-the-art thermal model package, we will show the 2CFO approach produces a more natural explanation of Strangeness Enhancement across various system energies and system sizes.

Thermal FIST (The FIST)

- User-friendly package within the family of HRG models
 - (Hadron Resonance Gas Model ~ Statistical Hadronization Model)
 - □ V. Vovchenko, H. Stoecker. 10.1016/j.cpc.2019.06.024
 - HRG Model Options
 - Ideal, Diagonal Excluded Volume, van der Waals
 - Parameterization of S-matrix approach
 - Finite resonance widths
 - Statistical Ensemble Options
 - Grand Canonical, Canonical, Strangeness Canonical
- Primary Modes
 - Thermal Fit Mode Extracting Freeze-out Parameters from Experimental Yields
 - Thermal Model Mode Calculating Yields from fixed Freeze-out Parameters
 - $\hfill\square$ Event Generator Mode
- User Input
 - Hadronic Spectrum
 - Experimental Yields

Thermal FIST (The FIST)

- User-friendly package within the family of HRG models
 - (Hadron Resonance Gas Model ~ Statistical Hadronization Model)
 - □ V. Vovchenko, H. Stoecker.10.1016/j.cpc.2019.06.024
 - HRG Model Options
 - <u>Ideal</u>, Diagonal Excluded Volume, van der Waals
 - Parameterization of S-matrix approach
 - Finite resonance widths
 - Statistical Ensemble Options
 - Grand Canonical, Canonical, Strangeness Canonical
- Primary Modes
 - D Thermal Fit Mode Extracting Freeze-out Parameters from Experimental Yields
 - Derived Thermal Model Mode Calculating Yields from fixed Freeze-out Parameters
 - Event Generator Mode
- User Input
 - Hadronic Spectrum
 - Experimental Yields

Hadronic Spectrum (Particle Data Group Lists)

- Ideal HRG Model assumes a noninteracting gas of hadrons and resonances
 - The more complete the hadronic spectrum, the closer the model is to reality
- There exists different levels of confidence on the existence of individual resonances
 - From Particle Data Group (PDG)
 - **** Denotes Well-Established States
 - $\hfill\square$ * Denotes States with least experimental confirmation
 - Incomplete decay channel information/branching ratios

From Houston Theory Group:

• PDG2016+: 738 States (*, **, *** and ****)

- Provides best compromise between number of states
- Used for entirety of this work
- See arXiv:2002.12395 (P. Alba et al.) for a detailed description of the effect of additional resonances on freeze-out parameters.

Figure: P. Alba et al. 10.1103/PhysRevD.96.034517

Experimental Yields Used in this Study

ALICE

- PbPb @ 5.02 TeV (10.1016/j.nuclphysa.2018.10.015)
- PbPb @ 2.76 TeV (10.1103/PhysRevC.88.044910)
- pPb @ 5.02 TeV (10.1016/j.physletb.2013.11.020)
- pp @ 7.00 TeV (10.1038/nphys4111)

STAR

- auAu @ 200 GeV (10.1103/PhysRevC.79.034909)
- auAu @ 64.2 GeV (10.1103/PhysRevC.83.024901)
- auAu @ 39.0 GeV (arXiv:1906.03732v1)
- auAu @ 27.0 GeV (arXiv:1906.03732v1)
- auAu @ 19.6 GeV (arXiv:1906.03732v1)
- auAu @ 11.5 GeV (arXiv:1906.03732v1)
- For all STAR Energies, (anti)proton yields are "all inclusive"
 - $\hfill\square$ Not corrected for weak-decay feed-down contributions from As
 - For this work, (anti)proton yields corrected via 10.1016/j.nuclphysa.2006.03.012 (Andronic et al. 2006)

Collision Energy Dependence of Chemical Freeze-out Parameters in A-A collisions

- Input available ALICE and STAR data into The FIST; extract freeze-out parameters
 - Grand Canonical Ensemble
 - Most Central Bin (0 10 %)
 - Fit Parameters:
 - Model: Ideal
 - Ensemble: Grand-Canonical
 - Fitting T, V and μ_B
 - Particles in Fit:
 - π^+ , π^- , K^+ , K^- , p, \bar{p} , Λ , $\bar{\Lambda}$, Ξ^- , $\bar{\Xi}^+$, Ω^- and $\bar{\Omega}^+$ (K_S^0 and ϕ where available)
 - $\hfill \ensuremath{\,\bullet\)}$ Perform multiple fits w/ different combinations of the above
 - Examine sensitivity of fit parameters when fitting different particle species
 - Compare with HRG Model Susceptibility Calculations
 - Compare with Lattice Calculations
 - Particle/Decay List
 - PDG2016+

The FIST: PDG2016+ Fits PbPb @ 5.02 TeV (0 - 10%)

Energy Dependence: "Full" Fit

Energy Dependence (0 - 10%): Flavour Specific Fits

• Supports a flavour-dependent freeze-out temperature

 $T \mid_{\mu_B=0}$ values: $T_L = 150.2 \pm 2.6 \text{ MeV}$ $T_S = 163.1 \pm 2.7 \text{ MeV}$

 $T_{LQCD} = 157 \pm 14 \text{ MeV}^{\dagger}$

By eye, T_L and T_S lines converge at high μ_B

If we use temperatures extracted from yields that serve as susceptibility (i.e. order parameter) proxies, then our measurements may signal a critical point at high μ_B .

WB Collab. 10.1016/j.physletb.2015.11.011

System Size dependence of Chemical Freeze-out Parameters @ ALICE (1CFO)

- Run The FIST in Thermal Model Mode; extract yields \forall ALICE Systems †
- All Centralities (Multiplicity classes)
- Fit Parameters:
 - Ensemble: Strangeness Canonical (Ideal Model)[†]
 - Fixing:
 - $\mu_B = 0 \text{ MeV}$
 - $V = V_c$
 - $\gamma_S = 1$
 - Fixing freeze-out temperature to values extracted from Energy Dependence Procedure:
 - $T_L = 150 \text{ MeV}$
 - *T_{ch}* = 158 MeV
 - *T_S* = 163 MeV
 - Particle/Decay List
 - PDG2016+
 - $\hfill\square$ Compare anti-hadron to π^+ Calculated Yield Ratios
 - Normalizing WRT High-Multiplicity pp Limit

Due to deterioration of GCE fit qualities in small systems (see next slide).

ALICE FIST Fits (GCE Trials)

GCE approach fails to adequately describe all three systems consistently

Large systems:

- Favor temperature splitting
- Quality of fit is consistent \u03c8 multiplicities
- Quality of fit slightly improves for flavour specific fits

Smaller systems:

- Not described well by SHM
- Quality of fit worsens at low multiplicities
- Full equilibration of systems is not likely

ALICE FIST Fits (GCE Trials)

GCE approach fails to adequately describe all three systems consistently

- Particularly in Smaller systems:
 - Not described well by SHM
 - Quality of fit worsens at low multiplicities
 - Full equilibration of systems is not likely

Best bet is the Strangeness Canonical Ensemble

ALICE FIST Fits (SCE)

SCE approach adequately describes all three systems consistently

- Large systems:
 - Favor temperature splitting
 - Quality of fit is consistent \u03c8 multiplicities
 - Quality of fit slightly improves for flavour specific fits
- Smaller systems:
 - Favor temperature splitting
 - Quality is worst at lowest multiplicity class
 - For dN_{ch}/dη > 10, quality of fits are consistent with those from large systems
 - Quality of fit improves for flavour specific fits

FIST Thermal Model Mode (Ω) – Single Freeze-out Picture

System Size dependence of Chemical Freeze-out Parameters @ ALICE (2CFO)

- Repeat previous procedure, now assuming two freeze-out temperatures (2CFO)
 - π^+ Yields Extracted from T_L = 150 MeV Light Freeze-out (LFO)
 - \bar{h} Yields Extracted from $T_S = 163$ MeV Strange Freeze-out (SFO)
 - $\hfill\square$ Ratios calculated and normalized accordingly
 - WRT High-Multiplicity pp Limit

FIST Thermal Model Mode (Ω) – 2CFO Picture

Summary – FIST Thermal Model Mode 1CFO v. 2CFO

- 2CFO Picture describes all systems more adequately than the 1CFO picture
 - Strangeness Equilibration in small systems seems inaccurate
 - γ_S and V_c to be considered
- Questions at hand:
 - Does the 2CFO Picture more adequately describe
 - Strange Baryon Production across all LHC Systems?
 - Can the 2CFO treatment be applied across all BES Energies
 - Namely for $\mu_B \neq 0$
 - Is Strangeness fully saturated at top LHC Energies?

See Cavalry for Deviation plots.

Outlook

- Flavour separation confirmed from LHC down to lower RHIC energies
 - $\hfill\square$ Flavor dependent fits consistently depict an overall better quality of fit
 - $\hfill\square$ Confirms flavour hierarchy extends into BES
 - $\hfill\square$ Potential convergence of \mathcal{T}_L and \mathcal{T}_S lines at high μ_B might signal interesting physics
- We show evidence for a flavour-dependent chemical freeze-out temperatures in the cross-over region of the QCD phase diagram
 - $\hfill\square$ Converge above μ_B = 300 MeV
- Ongoing analyses:
 - Centrality Dependent 2CFO Scheme for BES Energies
 - $\,\,\,$ SCE with Strangeness Saturation Factor γ_{S} and Correlation Volume V_{C}
 - Charm Canonical Ensemble (CCE); including charmed hadrons in thermal fit
 - $\hfill\square$ Upper-bound thermal model calculations for exotica yields

CAVALRY

Fernando A. Flor (fernando.flor@cern.ch)

VWND2020 – Puerto Vallarta, Jalisco (02.03.20) 22 / 22

System Size Volume Dependence (ALICE)

Extrapolated STAR (Anti)Proton Feed-down Contributions

• Applied to STAR Data prior to performing fits via The FIST

	Proton		Anti-Proton	
$\sqrt{S_{_{NN}}}$	δ	$(1-\delta)$	δ	$(1 - \delta)$
7.70 GeV	19.00%	81.00%	56.50%	43.50%
11.5 GeV	23.00%	77.00%	48.00%	52.00%
19.6 GeV	27.50%	72.50%	44.00%	56.00%
27.0 GeV	29.50%	70.50%	41.50%	58.50%
39.0 GeV	31.00%	69.00%	40.00%	60.00%
64.2 GeV	32.00%	68.00%	38.50%	61.50%
200 GeV	34.00%	66.00%	36.50%	63.50%

Extrapolation to BES Data from methods in: Andronic et al. (2006). 10.1016/j.nuclphysa.2006.03.012 (Andronic et al. 2006)

FIST 1CFO and 2CFO Deviations

/WND2020 – Puerto Vallarta, Jalisco (02.03.20) 22

Centrality (Multiplicity) Classifications

- ALICE pp @ 7.00 TeV
 - Most Central: 0 4.7%; dubbed as "High-Multiplicity pp Limit" (HMpp)
 - Used ∀ Normalizations
 - Mid-Central: 14 28%
 - Most Peripheral: 48 100%

ALICE pPb @ 5.02 TeV

- Most Central: 0 5%
- Mid-Central: 20 40%
- Most Peripheral: 80 100%

ALICE PbPb @ 2.76 TeV

- $\hfill\square$ Most Central: 0 10%
- Mid-Central: 20 40%
- Most Peripheral: 60 80%

ALICE pp @ $\sqrt{s} = 7$ TeV Reference Multiplicities

Enhanced Production of Multi-Strange Hadrons in High-Multiplicity Proton-Proton Collisions. ALICE Collaboration. 2017. Nature.Phys.13.2017.535-539.

Class Name	$\sigma/\sigma_{_{\it INEL>0}}$	$\langle dN_{ch}/d\eta \rangle$
Ι	0 - 0.95 %	21.3 ± 0.6
II	0.95 - 4.7 %	16.5 ± 0.5
	4.7 - 9.5 %	13.5 ± 0.4
IV	9.5 - 14 %	11.5 ± 0.3
V	14 - 19 %	10.1 ± 0.3
VI	19 - 28 %	8.45 ± 0.25
VII	28 - 38 %	6.72 ± 0.21
VIII	38 - 48 %	5.40 ± 0.17
IX	48 - 68 %	3.90 ± 0.14
X	68 - 100 %	2.26 ± 0.12

Event multiplicity classes, their corresponding fraction of the INEL>0 cross-section ($\sigma/\sigma_{INEL>0}$) and their corresponding $\langle dN_{ch}/d\eta \rangle$ at midpseudorapidity ($|\eta| < 0.5$).

ALICE pPb @ $\sqrt{s_{NN}} = 5.02$ TeV Reference Multiplicities

Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV. ALICE Collaboration. 2014. Phys. Lett. B 728 (2014) 25-38.

Event Class	V0A Range	$\left< dN_{ch}/d\eta \right>$
0 - 5 %	> 227	45 ± 1
5 - 10 %	187 - 227	36.2 ± 0.8
10 - 20 %	142 - 187	30.5 ± 0.7
20 - 40 %	89 - 142	23.2 ± 0.5
40 - 60 %	52 - 89	16.1 ± 0.4
60 - 80 %	22 - 52	9.8 ± 0.2
80 - 100 %	< 22	4.4 ± 0.1

Definition of the event classes as fractions of the analyzed event sample and their corresponding $\langle dN_{ch}/d\eta \rangle$ within ($|\eta_{lab}| < 0.5$).

ALICE PbPb @ $\sqrt{s_{NN}} = 2.76$ TeV Reference Multiplicities

Centrality Dependence of π , K, and p Production in Pb-Pb Collisions at $\sqrt{s_{MM}} = 2.76$ TeV. ALICE Collaboration. 2013. Phys. Lett. C 88, 044019 (2013).

Centrality	$\langle dN_{ch}/d\eta \rangle$	Norm. Uncertainty
0 - 5 %	1601 ± 60	0.5 %
5 - 10 %	1294 ± 49	0.5 %
10 - 20 %	966 ± 37	0.7 %
20 - 30 %	649 ± 23	1 %
30 - 40 %	426 ± 15	2 %
40 - 50 %	261 ± 9	2.4 %
50 - 60 %	149 ± 6	3.5 %
60 - 70 %	76 ± 4	5 %
70 - 80 %	35 ± 2	6.7 %
80 - 90 %	13.4 + 1.6 - 1.2	+12 % - 8.5%

 $\langle dN_{ch}/d\eta \rangle$ within ($|\eta| < 0.5$) with additional uncertainties from centrality definitions.