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Hypernuclei

A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more 
strange quarks) in addition to nucleons
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Hypernuclei

Photographic emulsion M. Danysz and J.Pniewski, Phil. Mag. 44 (1953) 348

A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more 
strange quarks) in addition to nucleons

1952: first observation of hypernuclear decay 
from cosmic rays data
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Hypernuclei

http://wwwa1.kph.uni-mainz.de/Hyp2006/poster.html

Main goals of hypenuclear physics:

● Extension of nuclear chart

● Understand the baryon-baryon interaction in 
strangeness sector

● Study the structure of multi-strange systems

A hypernucleus is a nucleus which contains at least one hyperon (a baryon containing one or more 
strange quarks) in addition to nucleons
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Hypernuclei production in heavy-ion collisions
d,t,3He,3

Λ
H

● The study of the production yield of light (hyper-)nuclei 
is very important:
 Production mechanism is not well understood

➢ How/when do they form?
• “early” at chemical freeze-out (thermal production) 
• or “late” at kinetic freeze-out (coalescence)?

➢ Do they suffer for the dissociation by rescattering?

2

Low binding energy (few MeV) and Λ separation 
energy "Snowballs in hell": their formation is very 
sensitive to chemical freeze-out conditions and to 

the dynamics of the emitting source
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Hypertriton (
Λ
H)



p n 3
Λ
H is the lightest known hypernucleus and is formed by (p,n,Λ).

● Mass = 2.991 GeV/c2

● B
Λ
 = 0.13 ± 0.05 MeV (B

d
 = 2.2 MeV, B

t
 = 8.5 MeV,  B

3He
 = 7.7 MeV) 

3

H → 3He + - (~25%)

3

H → 3He + 0 (~13%)

3

H → d + p + - (~41%)

3

H → d + n + 0 (~21%)

(3
Λ
H) 3

Λ
H  is unstable under weak decay. Possible decay modes:

● Branching ratios are not well known
● Only few theoretical calculations[1] available

[1] Kamada et al., Phys. Rev. C57(1998)4
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Motivations for hypertriton (
Λ
H) study

3

● A=3 (anti-)(3He, t, 3
ΛH), simple systems of 9 valence quarks: 

● 3
ΛH /3He and 3

ΛH /t (and anti) →  Λ-nucleon correlation (local baryon-strangeness correlation) 

● t /3He (and anti) →  local charge-baryon correlation

● YN & YY interaction (strangeness sector of hadronic EOS, cosmology, physics of neutron stars)

ALICE Collaboration, Phys. Lett. B 797 (2019) 134822ALICE Collaboration, Phys. Lett. B 754 (2016) 360–372 
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Hypernuclei production in heavy-ion collisions

1

● Thermodynamic approach to particle production in 
heavy-ion collisions

● Abundances fixed at chemical freeze-out (T
chem

) : 
(hyper)nuclei are very sensitive to T

chem 
because of their 

large mass (M)
 Exponential dependence of the yield:

dN/dy    e(- m/Tchem)
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● Nuclei are formed by protons and neutrons which are 
nearby in space and have similar velocities (after kinetic 
freeze-out) 

● Produced nuclei can break apart and be created again by 
final-state coalescence

Statistical thermal modelStatistical thermal model CoalescenceCoalescence

 A. Andronic et al., Phys. Lett. B 697, 203 (2011) G. Chen et al., Phys. Rev. C 88, 034908 (2013)
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A Large Ion Collider Experiment

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V0, cascade).

6
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A Large Ion Collider Experiment

ITSITS

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V0, cascade).

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044
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A Large Ion Collider Experiment

TPC

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V0, cascade).

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044
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A Large Ion Collider Experiment

TOF

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V0, cascade).

Time Of Flight (TOF): 
 Particle identification via velocity 

measurement

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044
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ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 1430044

ALICE Collaboration, Int. J. Mod. Phys. A 29 (2014) 
1430044

V0A V0C

A Large Ion Collider Experiment

Time Of Flight (TOF): 
 Particle identification via velocity 

measurement

Time Projection Chamber (TPC): 
 Global tracking
 Particle identification via dE/dx

Inner Tracking System (ITS) :
 Primary vertex
 Tracking
 Particle identification via dE/dx

2

V0 (A-C): Trigger, beam-gas event rejection, 
centrality, multiplicity classes

ALICE particle identification capabilities are unique. Almost all known techniques are exploited: 
specific energy loss (dE/dx), time of flight, transition radiation, Cherenkov radiation, calorimetry and 
decay topology (V0, cascade).

6
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Centrality of the collisions  

Centrality = degree of overlap of the 2 colliding nuclei

Central  collisions:
● small impact parameter b
● high number of participant nucleons →  high 

multiplicity

Peripheral collisions:
● large impact parameter b
● low number of participant nucleons →  low multiplicity

Centrality estimated with a Glauber model fit to 
the signal amplitude in the V0 scintillator arrays

ALICE Collaboration, Phys. Rev. Lett. 106, 032301 (2011)
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H identificationH identification
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H identification
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H and 3

Λ
H  search via two-body decays into charged 

particles: 
● Particle identification via specific energy loss in the 

TPC 
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H identification
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Signal Extraction:
● Identify 3He and π
● Evaluate (3He,π) invariant mass
● Apply topological cuts in order to:

➢ identify secondary decay vertex 
➢ reduce combinatorial background

● Extract signal

H and 3

Λ
H  search via two-body decays into charged 

particles: 

● Two body decay: low combinatorial background
● Charged particles: ALICE acceptance for charged 

particles higher than for neutrals
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H and 3

Λ
H  search via three-body decays into charged 

particles: 

● Larger combinatorial background
● High B.R. (~41%)
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H and 3

Λ
H  search via two-body decays has been also 

performed using machine learning:
● BDT (Boosted Decision Tree) method using a 

selection that maximize the significance x BDT 
efficiency
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10

ALICE Collaboration, Phys. Lett. B 754 (2016) 360–372 

H lifetime “puzzle”H lifetime “puzzle”
33
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H lifetime “puzzle”



3

● Very small EBΛ (~130 keV) led to the hypothesis that the 3
ΛH lifetime is slightly below the free Λ lifetime (263.2 

± 2 ps [1]) 

● Few theoretical predictions available 

● first one by Dalitz and Rayet (1966) → τ range 239.3 - 255.5 ps 

● most recent by Congleton (1992) and Kamada (1998) → 232 ps and 256 ps 

● Many experiments faced this challenge with different experimental techniques

Experimental results 

● Emulsion and bubble chamber experiment results tend 
to agree with free Λ value →  limited number of events 
satisfying the selection criteria → large errors 

● Heavy-ion results are systematically below the 
expected free Λ lifetime

[1] C.Patrignani et al. (Particle Data Group), Chin. Phys. C 40 100001 (2016)

14
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H lifetime puzzle nears resolution



3

The lifetime estimate is performed: 

● using the full data sample of Pb-Pb collisions at 
√s

NN
 = 5.02 TeV collected in 2015 

● selecting both hypertriton and anti-hypertriton 
candidates 

● using “ct distribution” 

● Signal extraction in four different ct bins - 4-7, 
7-10, 10-15, 15-28 cm

ALICE Collaboration, Phys. Lett. B 797 134905

15



04/03/2020                                                   36th WWND -  Ramona Lea /29


H lifetime puzzle nears resolution

Direct decay time measurement is difficult (~ps), 
but the excellent determination of primary and 
decay vertex allows measurement of lifetime (cτ) 
via:

Where ct = mL/p 
With m  the hypertriton mass, L  the decay length 
and p  the total momentum

16

ALICE Collaboration, Phys. Lett. B 797 134905

N (t )=N (0)exp(− c t
c τ )



3



04/03/2020                                                   36th WWND -  Ramona Lea /29


H lifetime puzzle nears resolution



3

17

Where ct = mL/p 
With m  the hypertriton mass, L  the decay length 
and p  the total momentum

Full 2018 Pb-Pb data sample + 
Machine Learning  for signal extraction

N (t )=N (0)exp(− c t
c τ )

Direct decay time measurement is difficult (~ps), 
but the excellent determination of primary and 
decay vertex allows measurement of lifetime (cτ) 
via:
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H lifetime puzzle resolution

● ALICE can be used also for hypernuclear 
physics measurements:
➢ Results from 2018 Pb-Pb data + Machine 

Learning methods represents the best 
world measurement  

➢ More precision can be reached:
✔ lifetime measured in the 3-body decay 

channel
● In the next future constraints also on the 

B.R. determination can also be set

18
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H production yieldH production yield

10


33

3
Λ
H

Is 3
Λ
H produced inside the hadron gas, 

or is it produced with all the other 
particles at the chemical freeze-out?
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H p

T
 spectra and yields



3

19

Transverse momentum spectra: 

● Measured in central (0-10%) and semi-central collisions (10-40%) 

Anti-hypertriton/Hypertriton ratio consistent with unity vs. p
T
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H p

T
 spectra and yields



3
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Transverse momentum spectra: 

● Measured in central (0-10%) and semi-central collisions (10-40%) 

Production in 3 centrality classes shows increase of production probability with increasing multiplicity
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H production yield



3

ALICE Collaboration: PLB 754, 360 (2016)

● The 3
Λ
H → 3He + π branching ratio is not 

well known, only constrained by the ratio 
between all charged channels containing 
a pion

● The preferred BR is ~ 25 % [1] (→ 
lifetime similar to free Λ)

● Extracted yield is in good agreement 
with equilibrium thermal model 
prediction for T

chem
 = 156 MeV, such as 

GSI-Heidelberg model [2], but not with 
non-equlibrium models, like SHARE[3]. 

● Result also in agreement with Hybrid 
UrQMD [4]

21

[1]Kamada et al., Phys. Rev. C57(1998)4
[2] A. Andronic et al. Phys. Lett. B 697, 203 (2011) 
[3]M. Pétran et al. Phys. Rev. C 88 (3) (2013) 034907
[4]J. Steinheimer et al. Phys. Lett. B 714 (2012) 85–91
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H production yield
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ALICE Collaboration: PLB 754, 360 (2016)

22

[1]Kamada et al., Phys. Rev. C57(1998)4
[2] A. Andronic et al. Phys. Lett. B 697, 203 (2011) 
[3]M. Pétran et al. Phys. Rev. C 88 (3) (2013) 034907
[4]J. Steinheimer et al. Phys. Lett. B 714 (2012) 85–91



04/03/2020                                                   36th WWND -  Ramona Lea /29

Hypertriton in thermal fit

● Particle production yields 
measured by ALICE in Pb-Pb 
collisions at √s

NN
 = 5.02 TeV

● Hypertriton and nuclei (d and 
3He) yields are included in the fit

● dN/dy described over a wide 
range (10-4  - 103) assuming 
thermal equilibrium and a 
chemical freeze-out temperature 
T

chem
 = 152-153 MeV

● The temperature values are 
compatible with the chemical 
freeze-out temperature ranges 
obtained from the ratios to 
deuteron and proton yields

K* not included in the fit
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Particle ratios

●
3

Λ
H/3He ratio

● Ratios for most central collisions in 
agreement with theoretical 
predictions from Hagedorn resonance 
gas (HRG) and thermal models 

24
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Particle ratios

●
3

Λ
H/p and 3

Λ
H/d

● Ratio to light hadron yields more 
sensitive to the chemical freeze-out 
temperature T

chem 

●
3

Λ
H/p and 3

Λ
H/d compared with 

THERMUS predictions as a function of 
T

chem 

● → T
chem

 = 153-165 MeV

● In agreement with T
chem

 = 156 MeV 
obtained from the fit to particle yield

25
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Strangeness population factor
Strangeness population factor S

3
 [1,2] is defined as: 

● It is independent on the chemical potential of the particles 
and any additional canonical correction factor for 
strangeness is canceled

● ALICE results obtained at 5.02 TeV is: 

● compatible with the published results at 2.76 TeV and 
with those at lower energies 

● in agreement with the prediction of the equilibrium 
thermal model (GSI-Heidelberg) and of the Hyrbrid 
UrQMD model

● Coalescence predictions available only up to top RHIC 
energies, needed at the LHC energies [1] E864 Collaboration, T. A. Armstrong et al. Phys. Rev. C 70, 024902 (2004) 

[2] S. Zhang et al. Phys. Lett. B 684, 224-227 (2010)

S3=


3 H
3He

×
p


26
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Hypertriton in pp collisision

● First observation of (anti)hyper-nuclei production in pp collisions at the LHC
● Extremely rare : dedicated trigger devised in the ALICE Transition Radiation Detector using the signal from 

the highly ionizing 3He

27
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Hypertriton in pp collisision

● First observation of (anti)hyper-nuclei production in pp collisions at the LHC
● Extremely rare : dedicated trigger devised in the ALICE Transition Radiation Detector using the signal from 

the highly ionizing 3He
● Yield measurement in pp will help for a better understanding of the production mechanism

K. Sun, C.M. Ko,  B. Dönigus Phys. Lett. B 792 (2019)132

27
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Outlook – ALICE upgrade 

After the LS2 ALICE will be able to collect data with better performance at higher luminosity 
● Expected integrated luminosity: ~10 nb-1 ( ~ 8x109 collisions in the 0-10% centrality class)
● New ITS: less material budget and more precise tracking for the identification of hyper-nuclei
● All the physics which is now done for A = 2 and A = 3 (hyper-)nuclei will be done for A = 4 

28
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Summary

● Measurements of the (anti-)hypertriton production and lifetime have been performed 
with the most recent LHC Run2 data exploiting the excellent performance of the ALICE 
detector

● Thermal model can successfully describe particular aspects of the (hyper-)nuclei 
measurements:
● Integrated yields and ratios are well described by thermal models

● Recent hypertriton lifetime measurement shows an improved precision and a value closer 
to the Λ lifetime with respect to the previous heavy-ion results 

● New theoretical calculations for the lifetime are needed as well as more precise 
measurements of the value of EBΛ

● New and more precise data are expected from the LHC on the presented topics in the 
next years. These will provide stricter constraints to the theoretical models

29
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