THE 36TH WINTER WORKSHOP ON NUCLEAR DYNAMICS (WWND), PUERTO VALLARTA, MEXICO

EIC detectors

Jin Huang (BNL) For the EIC user group

e+p/A landscape with EIC See also: M. Sievert Thu AM

Physics goals → Detector requirement - Nucleon as a laboratory for QCD

The compelling question: How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

- Deliverable measurement using polarized electronproton collisions
 - The longitudinal spin of the proton, through Deep-Inelastic Scattering (DIS)
 - Transverse motion of quarks and gluons in the proton, through Semi-Inclusive Deep-Inelastic Scattering (SIDIS)
 - Tomographic imaging of the proton, through Deeply Virtual Compton Scattering (DVCS)
- Leading detector requirement:

- Good detection and kinematic determination of DIS electrons
- Momentum measurement and PID of hadrons
- Detection of exclusive production of photon/vector mesons and scattered proton
- Beam polarimetry and luminosity measurements

See also: M. Sievert Thu AM

Physics goals → Detector requirement - nucleus as a laboratory for QCD

- The compelling questions:
 - Where does the saturation of gluon densities set in?
 - How does the nuclear environment affect the distribution of quarks and gluons and their interactions in nuclei?
- Deliverable measurement using electron-ion collisions
 - Probing saturation of gluon using diffractive process and correlation measurements
 - Nuclear modification for hadron and heavy flavor production in DIS events; probe of nPDF
 - Exclusive vector-meson production in eA
- Leading detector requirement:
 - Large calorimeter coverage to ID diffractive events
 - Displaced vertex for heavy flavor quark tagging
 - Detection/rejection of break-up neutron production in eA collisions

See also: M. Sievert Thu AM

Towards EIC in the past decade

CD-0 announcement and site selection

- Secretary Brouillette approved Critical Decision-0, "Approve Mission Need," for the EIC on December 19, 2019.
- January 19, 2020 DoE announces CD-0 and that BNL will be the host of the EIC

The Electron Ion Collider (EIC), to be designed and constructed over ten years at an estimated cost between \$1.6 and \$2.6 billion, will

UPTON, NY- Yesterday, the U.S. Department of Energy (DOE) named Brookhaven National Laboratory on Long Island in New York as the site for building an Electron-Ion Collider Jin H (https://www.bnl.gov/eic/) (EIC), a one-of-a-kind nuclear physics research facility. This

Relativistic Heavy Ion Collider mid-2020s

RHIC transition to the EIC [eRHIC pre-CDR]

- Highly polarized electron and nucleon beams, Ion beams from D-> U or Pb.
- Hadrons up to 275 GeV, Electrons up to 18 GeV
- Vs = 20 GeV -141 GeV, supporting two IPs
- ▶ High luminosity 10^{34} cm⁻²s⁻¹ (≥ 100x HERA luminosity)

EIC: unique collider → unique detector system challenges

	EIC	RHIC	LHC → HL-LHC
Collision species	$\vec{e} + \vec{p}, \vec{e} + A$	$\vec{p} + \vec{p}/A, A + A$	p + p/A, $A + A$
Top x-N C.M. energy	140 GeV	510 GeV	13 TeV
Bunch spacing	10 ns	100 ns	25 ns
Peak x-N luminosity	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	$10^{34} \rightarrow 10^{35} \mathrm{cm}^{-2} \mathrm{s}^{-1}$
x-N cross section	50 µb	40 mb	80 mb
Top collision rate	500 kHz	10 MHz	1-6 GHz
dN _{ch} /dη in p+p/e+p	0.1-Few	~3	~6
Charged particle rate	4M N _{ch} /s	60M N _{ch} /s	30G+ <i>N</i> _{ch} /s

- EIC luminosity is high, but collision cross section is small ($\propto \alpha_{EM}^2$) \rightarrow low collision rate
- But events are precious and have diverse topology \rightarrow large acceptance
- Background and systematic control is crucial → precision detectors

Common EIC Detector features

- Central+ forward/backward tracker layout, hermetic coverage in tracking/calorimetry/PID for |η|<4
 - Low material budget in the tracker volume
 - 1.4 4.0 T central solenoid field, moderate \vec{p} resolution (~1% level)
 - Large area PID coverage
 - Moderate-to-high vertex resolution (<20 μm or so)
 - Moderate EMCal and HCal energy resolution
- Advanced far forward instrumentation (Roman Pots, ZDC, etc)
- Far backward instrumentation (Low Q² tagger, lumi., polarimeter)

10

Early EIC Detector Concepts

EIC instrumentation efforts

- EIC generic R&D: <u>https://wiki.bnl.gov/conferences/index.php/EIC_R%25D</u>
 - Started 2011 @ BNL, in association with JLab and the DOE
 - 10-11 projects supported per FY, covering all aspects of major EIC detector components. Open to international groups

EIC user group yellow report initiative: http://www.eicug.org/web/content/yellow-report-initiative

- Advance physics studies and detector concepts in preparation for the realization of the EIC
- Recently started, 1st workshop end-March at Temple Univ.
- Three top level working groups: physics, detector, accelerator
- EIC-related NP experiments: e.g. many EIC instrumentation are used and tested in large scale in STAR-forward upgrade and sPHENIX

Detector drives & R&D highlight – DIS

13

Detector drives & R&D highlight – DIS

Tagging the L.O. struck quark
kinematics with scattered electron
→ Low mass main tracker over large acceptance: GEMs, μRWELL,

Compact TPC, MAPS outer tracker

µRWELL, 2D readout (eRD6)

Large area GEM (eRD6)

TPC field cage (sPHENIX)

Detector drives & R&D highlight – DIS

Tagging electron
→ Identify electrons with EM Calorimeters and PID det.
Tagging out-going quark with jet
→ Hadronic calorimeter

W-Scifi Compact EMCal (eRD1, sPHENIX)

Scint. glass, PbWO₄ (eRD1)

WWND 202

Detector drives & R&D highlight – SIDIS

Tagging the struck quark flavor with a fragmenting hadron

→ Hadron measurement in large acceptance

Detector drives & R&D highlight – SIDIS

Tagging the struck quark flavor
with a fragmenting hadron
→ Hadron Particle ID: Aerogel & gas
RICH, DIRC, ToF, dE/dx

Modular AeroGel RICH (eRD14)

θ_c (rad) VV VV ND 2020

Detector drives & R&D highlight – SIDIS

Tagging the struck gluon with heavy flavor production → Precision vertex tracker

MAPS, dMAPS (ALICE, sPHENIX, eRD16, eRD18)

Tracker simulation (eRD16, eRD18)

500

Detector drives & R&D highlight – Exclusive processes

- \rightarrow Hermiticity
- → (also DIS) require unprecedented integration of detector and accelerators
 - Lumi. monitor
 - Low Q^2 tagger
 - Far-forward spectrometer
 - Roman pots
 - ZDC

It will be a challenging integration

One detector concept shown as illustration [sPH-cQCD-2018-001: <u>https://indico.bnl.gov/event/5283</u>

Jin Huang <jhuang@bnl.gov>

WWND 2020

Collision signal data rate

- e + p cross section (50 µb) << p + p
 - All collision signal ~ 100 Gbps @ 10³⁴ cm⁻² s⁻¹ & 500kHz collision trigger-less readout
 - Less than sPHENIX peak disk rate (15kHz Au+Au triggered + pile up)
- Background and noise control will be critical for EIC

Strategy for an EIC real-time system

- For the signal data rate from EIC (100 Gbps), we can aim for filtering-out and streaming all collision in raw data without a hardware-based global triggering
- One possible strategy :
 - Full streaming readout front-end (buffer length : μs)
 - \rightarrow DAQ interface to commodity computing (e.g. ATLAS/sPHENIX FELIX)
 - → Disk/tape storage of streaming time-framed zero-suppressed raw data (buffer length : s)
 - \rightarrow Collision event tagging in offline production (latency : days)

ROOKHAVEN

An application of this strategy: sPHENIX trackers

BROOKHAVEN

EIC user group

- EIC user group established in summer 2016
- 1033 members 211 institutions in 31 countries
- Welcome to join the yellow report studies : <u>http://www.eicug.org/web/content/</u> yellow-report-initiative
- Next user group meeting: Aug 2020 @ Miami <u>https://indico.bnl.gov/event/7352/</u>

Summary

- EIC physics driven unique detector requirement: strong emphasis on low radiation length tracker, large acceptance hadron PID, and unprecedented detector-accelerator integration
- Exploring new paradigm of DAQ for EIC: streaming readout time framed hits, triggerless DAQ, event building selection offline
- EIC specific R&D funded in the last decade, early application to many on-going experiments at JLab and BNL
- Ongoing Yellow Report initiative to define the detector requirement

Extra information

WWND 2020

FY'21 Congressional Budget Request (pg. 361):

Critical Milestone History

Fiscal Year	CD-0	Conceptual Design Complete	CD-1	CD-2	Final Design Complete	CD-3	D&D Complete	CD-4
FY 2021 ^a	12/19/19	4Q FY 2021	4Q FY 2021	4Q FY 2023	4Q FY 2024	4Q FY 2024	N/A	4Q FY 2032

CD-0 – Approve Mission Need for a construction project with a conceptual scope and cost range

Conceptual Design Complete – Actual date the conceptual design was completed (if applicable)

CD-1 – Approve Alternative Selection and Cost Range

CD-2 – Approve Performance Baseline

Final Design Complete - Estimated/Actual date the project design will be/was complete (d)

CD-3 – Approve Start of Construction

D&D Complete – Completion of D&D work

CD-4 – Approve Start of Operations or Project Closeout

Vision for a Timeline - Paris EICUG Meeting

EICUG Remote Meeting

Philadelphia, PA, January 23, 2020

Bernd Surrow

Rate in Geant4 full detector simulation Sum collision + beam gas

sPH-cQCD-2018-001: https://indico.bnl.gov/event/5283/ /, Simulation: https://github.com/sPHENIX-Collaboration/singularity

Simulation: <u>https://github.com/sPHENIX-Collaboration/singularit</u>

e+p DIS 18+275 GeV/c Q² ~ 100 (GeV/c)²

Beam gas event p + p, 275 GeV/c at z=-4 m

Hadron PID solution for EIC

- h-endcap: a RICH with two radiators (gas + aerogel) is needed for π/K separation up to ~50 GeV/c
- e-endcap: A compact aerogel RICH with π/K separation up to ~10 GeV/c
- barrel: A high-performance DIRC provides a compact and cost-effective way to cover the area with π/K separation up to ~6-7 GeV/c
- TOF and/or dE/dx in a TPC can cover lower momenta

Neutron fluence from primary interactions

<u>The quantity</u>: Fluence = "a sum of neutron path lengths"/"cell volume" for N events

The numbers look OK, but:

- Beam line elements not incorporated in the simulation
- Thermal neutrons are not accounted
- Close to beam line: ~10³⁴ cm⁻²s⁻¹ over ~10 years would exceed ~10¹¹ n/cm²

Radiation dose from primary interactions

<u>The (primary) quantity</u>: $E_{sum} = "a sum of dE/dx"/"cell volume" for N events$

1 rad = 0.01 Gy & [Gy] = [J/kg] & PWO density ~8g/cm³ -> ~250 rad/year (at "nominal" luminosity ~10³³ cm⁻² s⁻¹) -> looks OK?