The 36th Winter Workshop on Nuclear Dynamics

Summary of charm results from ALICE

C. Terrevoli University of Houston for the ALICE Collaboration

Puerto Vallarta, Mexico 1-7 March 2020

Heavy Quarks (HQ), **charm** and **beauty**, as probes of the QGP properties

- $m_Q >> \Lambda_{QCD}$
 - their production cross section calculable with pQCD
- *m*_Q >> T_{QGP}
 - production restricted to initial hard scatterings (formation time $1/2 m_Q \sim 0.02 0.1 \text{ fm/c}$)
 - long relaxation time τ_Q , possibly comparable to the fireball lifetime (~ few fm/c)

- **QGP** investigation with HQs:
 - Open heavy flavours —> probe the opacity of the QGP
 - tomography via HQ energy loss at high p_{T} and HQ as brownian motion markers at low p_{T} . -> spatial diffusion coefficient: 2πTD_s
 - Quarkonia —> sensitive to the temperature of QGP, probe suppression of charmonia due to color screening and regeneration in medium

Heavy-flavour physics

Investigate strongly interacting matter under extreme conditions of temperature and density

mb MeV 104

Heavy Quarks (HQ), **charm** and **beauty**, as probes of the QGP properties

- $m_Q >> \Lambda_{QCD}$
 - their production cross section calculable with pQCD
- $m_{\rm Q} >> T_{\rm QGP}$
 - production restricted to initial hard scatterings (formation time $1/2 m_Q \sim 0.02 0.1 \text{ fm/c}$)
 - long relaxation time τ_Q , possibly comparable to the fireball lifetime (~ few fm/c)

QGP investigation with HQs:

- Open heavy flavours —> probe the opacity of the QGP
 - tomography via HQ energy loss at high p_{T} and HQ as brownian motion markers at low p_{T} . -> spatial diffusion coefficient: 2πTD_s
- Quarkonia —> sensitive to the temperature of QGP, probe suppression of charmonia due to color screening and regeneration in medium

Not only Pb-Pb collisions! Heavy-flavour measurements in small systems:

- pp collisions: provide constraint to pQCD calculations
- p-Pb collisions: investigate Cold Nuclear Matter effects
- High multiplicity pp and p-Pb: onset of the QGP?

C. Terrevoli

Heavy-flavour physics

Investigate strongly interacting matter under extreme conditions of temperature and density

mb MeV 104

Space-time evolution From heavy-quark production to hadronization into heavy-flavour hadrons e, μ time π, К, р, ... e, μ Central region T_{fo} Ţ_{ch} kinetic Freeze-Out ζT_c J/W

QGP

c quark

beam

Hadronization 5-10 fm/c

QGP formed at ~1 fm/c

HQ time formation < 0.1 fm/c

QGP formed at ~1 fm/c

Hadronization 5-10 fm/c

HQ time formation < 0.1 fm/c

HQ production

Space-time evolution From heavy-quark production to hadronization into heavy-flavour hadrons

region

Central

QGP

J/Ψ

c quark

QGP formed at ~1 fm/c

Hadronization 5-10 fm/c

HQ time formation < 0.1 fm/c

HQ production

Space-time evolution From heavy-quark production to hadronization into heavy-flavour hadrons

region

Central

QGP

J/Ψ

c quark

QGP formed at ~1 fm/c

Hadronization 5-10 fm/c

HQ time formation < 0.1 fm/c

HQ production

Space-time evolution From heavy-quark production to hadronization into heavy-flavour hadrons

region

Central

QGP

J/Ψ

c quark

QGP formed at ~1 fm/c

Hadronization 5-10 fm/c

HQ time formation < 0.1 fm/c

HQ production

Space-time evolution From heavy-quark production to hadronization into heavy-flavour hadrons

Central regior

QGP

J/Ψ

c quark

Charm production mechanisms and test of the pQCD calculations

Charm production mechanisms and test of the pQCD calculations

Hadronization mechanisms: fragmentation in vacuum? recombination with light partons?

Charm production mechanisms and test of the pQCD calculations

Hadronization mechanisms: fragmentation in vacuum? recombination with light partons?

Colour-charge and mass dependence

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

Charm production mechanisms and test of the pQCD calculations

Hadronization mechanisms: fragmentation in vacuum? recombination with light partons?

Colour-charge and mass dependence

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

Thermalization of

Open heavy flavour and quarkonia reconstruction

Open Heavy Flavour (HF) via fully reconstructed **D mesons,** Λ_c , Ξ_c hadronic decays: **ITS**, **TPC**, **TOF** $D^0 \rightarrow K^-\pi^+, D^+ \rightarrow K^-\pi^+\pi^+, D^{*+} \rightarrow D^0\pi^+, D_s^+ \rightarrow \Phi\pi^+ \rightarrow K^-K^+\pi^+, D^{*+} \rightarrow D^0\pi^+, D^{*+} \rightarrow D^0\pi^+ \rightarrow K^-K^+\pi^+, D^{*+} \rightarrow D^0\pi^+, D^{*+} \rightarrow \Phi\pi^+ \rightarrow K^-K^+\pi^+, D^{*+} \rightarrow D^0\pi^+, D^{*+} \rightarrow D^0\pi^+ \rightarrow K^-K^+\pi^+, D^{*+} \rightarrow D^0\pi^+, D^{*+} \rightarrow D^0$ $\Lambda_c^+ \rightarrow \pi^+ K^- p, \Lambda_c^+ \rightarrow p K^0_s, \Xi^+_c \rightarrow \pi^+ K^- p, \Xi^0_c \rightarrow \pi^+ \Xi^$ and partially reconstructed **semi-leptonic decays** Muons: forward muon spectrometer. D, B $\rightarrow \mu^{\pm} + X$ Electrons: ITS, TPC, TOF, EMCAL, TRD. D, $B \rightarrow e^{\pm} + X$, and $\Xi_c^0 \rightarrow e^+ + \Xi^-$

Charm measurements in ALICE

Production cross section of heavy-flavour hadrons

Open HF and quarkonia production in pp collisions

D-meson production cross section in pp collisions at \sqrt{s} = 5.02 TeV at mid rapidity

- precise reference, measured at the same energy in Pb-Pb and p-Pb
- D⁰ measured down to $p_T = 0$

Open HF and quarkonia production in pp collisions ()

D-meson production cross section in pp collisions at \sqrt{s} = 5.02 TeV at mid rapidity

- precise reference, measured at the same energy in Pb-Pb and p-Pb
- D⁰ measured down to $p_T = 0$

C. Terrevoli

Inclusive (prompt and non-prompt) J/Ψ production cross section in pp collisions at \sqrt{s} = 5.02 TeV at forward rapidity

- precise reference, measured at the same energy in Pb-Pb and p-Pb
- measured down to $p_T = 0$
- well described by NRQCD+FONLL

D-meson production in pp collisions

Not only reference for Pb-Pb and p-Pb: perturbative-QCD test

- Systematic comparison with several pQCD calculations with different schemes: agreement within uncertainties • Data: smaller uncertainties than theoretical ones:
 - dominated by factorisation and renormalisation scales of the perturbative calculations

D-meson production in pp collisions

Not only reference for Pb-Pb and p-Pb: perturbative-QCD test

- Systematic comparison with several pQCD calculations with different schemes: agreeme • Data: smaller uncertainties than theoretical ones:
 - dominated by factorisation and renormalisation scales of the perturbative calculations

C. Terrevoli

important measurement to constrain theoretical calculations and fundamental input for models to describe kinematics modification in the QGP

Particle ratios and hadronization mechanisms

D-meson ratios in different systems

 $\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = PDF(x_{1},\mu_{F})PDF(x_{2},\mu_{F}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{c}}(x_{1},x_{2},\mu_{R},\mu_{F}) \otimes D_{c\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{F})$

- Consistent with ratios measured in e⁺e⁻ and ep collisions Gladilin, EPJ C75 (2015) 19 \bullet
 - no dependency on collision systems
- Universality of D-meson Fragmentation Functions

C. Terrevoli

Sensitive to ratio of Fragmentation Functions for different hadronisation of charm quark

Relative abundances of D-meson-specie ratios in different collision systems and energies

WWND 2020

D-meson ratios in different systems

 $\frac{\mathrm{d}\sigma^{\mathrm{D}}}{\mathrm{d}p_{\mathrm{T}}^{\mathrm{D}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = PDF(x_{1},\mu_{F})PDF(x_{2},\mu_{F}) \otimes \frac{\mathrm{d}\sigma^{\mathrm{c}}}{\mathrm{d}p_{\mathrm{T}}^{c}}(x_{1},x_{2},\mu_{R},\mu_{F}) \otimes D_{c\to\mathrm{D}}(z=p_{\mathrm{D}}/p_{\mathrm{c}},\mu_{F})$

- Consistent with ratios measured in e⁺e⁻ and ep collisions Gladilin, EPJ C75 (2015) 19 \bullet
 - no dependency on collision systems
- Universality of D-meson Fragmentation Functions

C. Terrevoli

Sensitive to ratio of Fragmentation Functions for different hadronisation of charm quark

ALI-PREL-336410

Relative abundances of D-meson-specie ratios in different collision systems and energies

D-meson ratios flat vs p_T and independent on the collision energy and collision system

Baryon-to meson ratios in pp collisions

[2] M.He, R. Rapp: Phys.Lett. B795 (2019) 117-121

ALI-PREL-326024

- Λ_c/D^0 in pp higher than in e⁺e⁻ and ep collisions, and models tend to underestimate the ratios
- Also Ξ_c/D^0 ratio underestimated by theoretical calculations
 - Universality of charmed baryon Fragmentation Functions broken?

Colour reconnection [1] with string formation beyond leading colour approximation (enhanced CR) mechanisms with 3-leg junctions), and Statistical Hadronization Model (SHM) with increased number of higher-mass baryon states [2] among possible explanations for the enhancement

C. Terrevoli

baryon-over-meson ratios: System dependent?

Baryon-to meson ratios in pp collisions

[2] M.He, R. Rapp: Phys.Lett. B795 (2019) 117-121

ALI-PREL-326024

- Λ_c/D^0 in pp higher than in e⁺e⁻ and ep collisions, and models tend to underestimate the ratios
- Also Ξ_c/D^0 ratio underestimated by theoretical calculations
 - Universality of charmed baryon Fragmentation Functions broken?
- Similar trend of baryon-to-meson ratio in Light and Heavy Flavour sector:
 - in the fragmentation)

C. Terrevoli

• HF sector hadronisation is quite different due to the hard scale (the c/b quark produced in the hard scattering not

Strangeness enhancement

If coalescence plays a role, in Pb-Pb collisions, enhanced D_s over non-strange D mesons

Strange - non Strange D Mesons

- Hint of enhanced D_s/D⁰ ratio at low, intermediate p_T in **Pb-Pb** with respect to **pp** collisions, measured at the same energy
- compatible measurements at high p_{T}

- compatible measurements at high p_{T}

 $dN_{ch}/d\eta = 3.9$ $dN_{ch}/d\eta = 28.1$ $dN_{ch}/d\eta = 7$

- Hint of enhanced D_s/D⁰ ratio at low, intermediate p_T in **Pb-Pb** with respect to **pp** collisions, measured at the same energy
- compatible measurements at high $p_{\rm T}$

pp@13TeV, large statistics, more differential measurements: compatible ratios in pp at high multiplicity wrt **low** multiplicity.

> $dN_{ch}/d\eta = 3.9$ $dN_{ch}/d\eta = 28.1$ $dN_{ch}/d\eta = 7$

C. Terrevoli

ALI-PREL-32376

 Λ_c/D^0 in Pb-Pb enhanced at low $p_{\rm T}$ wrt minimum bias pp, at the same energy.

- compatible measurements at high p_{T}

 $dN_{ch}/d\eta = 3.9$ $dN_{ch}/d\eta = 28.1$ $dN_{ch}/d\eta = 7$

than D_s/D^0

C. Terrevoli

ALI-PREL-342747

• More pronounced increasing trend from low towards higher multiplicities, in pp collisions for Λ_c/D^0 at low-intermediate p_T ,

- than D_s/D^0
- Λ_c/D^0 : high-multiplicity pp and minimum bias p-Pb, and semicentral and central Pb-Pb: measurements in agreement

• More pronounced increasing trend from low towards higher multiplicities, in pp collisions for Λ_c/D^0 at low-intermediate p_T ,

Strangeness and baryon-to-meson: comparison with models in Pb-Pb

- \bullet measurements in Pb-Pb
- \bullet

C. Terrevoli

Theoretical models that include charm quark hadronization via coalescence + fragmentation describe the D_s enhancement in Pb-Pb wrt pp and the Λ_c/D^0

Statistical Hadronization Model describes the Λ_c/D^0 in Pb-Pb

Nuclear modification factor

Nuclear modification factor in p-Pb

C. Terrevoli

 $/dp_{T}dy$ $/dp_{T}dy$

Nuclear modification factor in p-Pb

Nuclear modification factor in p-Pb

Different rapidity ranges allow access to different Bjorken-*x* regimes

- The shadowing calculations describe well the y_{cms} dependence of the R_{pPb} at forward-y and backward-y
- hint of enhancement at backward rapidity at low p_{T}
 - described by models including CNM effects

Nuclear modification factor in p-Pb

HF production in p-Pb vs multiplicity

*Q*_{pPb} consistent with unity within uncertainties More radial flow in RHIC d–Au than at the LHC?

 $Q_{\mathrm{pPb}} =$

HF production in p-Pb vs multiplicity

Centrality classes: slicing the distribution of the energy deposited in the neutron calorimeter in the Pb-going side (ZNA)

 $\mathrm{d}N_\mathrm{mult}^\mathrm{pPb}/\mathrm{d}p_\mathrm{T}$

*Q*_{**pPb} consistent with unity** within uncertainties</sub> More radial flow in RHIC d–Au than at the LHC?

C. Terrevoli

Hint of Q_{cp} > 1 in $3 < p_T < 8$ GeV/*c* for **D** mesons with 3σ significance. Similar trend as for charged particles. Shifted mean? ➡Radial flow? Initial or final-state effect?

Nuclear modification factor: R_{pPb} vs R_{AA}

First measurement of HF in Pb-Pb down to $p_T = 0$ at LHC

Nuclear modification factor: R_{pPb} vs R_{AA}

C. Terrevoli

 R_{pPb} compatible with unity for $p_T>3$ GeV/c Strong suppression in Pb-Pb is due to final state effects!

Open HF nuclear modification factor R_{AA}

ALI-PREL-330734

- Similar suppression of **D mesons** and charged particles at high p_{T}
- less suppression for D at low/intermediate p_{T}
- Interplay of harder charm p_{T} distributions and different fragmentation functions w.r.t. light quarks and gluons
- Bump at low *p*_T: charm quarks gain collective motion in the medium evolution?
- Hint of less suppressed D_s and Λ_c

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

Open HF nuclear modification factor R_{AA}

ALI-PREL-330734

- Similar suppression of D mesons and charged particles at high p_{T}
- less suppression for D at low/intermediate p_{T}
- Interplay of harder charm p_{T} distributions and different fragmentation functions w.r.t. light quarks and gluons
- Bump at low *p*_T: charm quarks gain collective motion in the medium evolution?
- Hint of less suppressed D_s and Λ_c

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

 R_{AA} not determined just by 'energy loss' Interplay of energy loss, collective motion and hadronization mechanisms

Open HF nuclear modification factor R_{AA}

 Similar suppression of **D mesons** and charged particles at high p_{T}

• less suppression for D at low/intermediate p_{T}

- Interplay of harder charm p_{T} distributions and different fragmentation functions w.r.t. light quarks and gluons
- Bump at low p_T: charm quarks gain collective motion in the medium evolution?
- Hint of less suppressed D_s and Λ_c

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

 Larger suppression for prompt **D**⁰ mesons wrt **D**⁰ from B in $5 < p_T < 10$ GeV/c Hint of m_Q ordering from **B** w.r.t. **D** at low p_T

Hint of hierarchy observed ad low- $p_T R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

> Color charge and mass dependence of *R*_{AA}

Open HF hadron *R*_{AA}: theoretical model comparison

• POWLANG, BAMPS el, TAMU: do not include radiative energy loss \rightarrow determination of onset of radiative contributions by deviations from experimental data at a certain p_{T} • PHSD, MC@sHQ+EPOS2, BAMPS el.rad, Djordjevic: both elastic and radiative contributions are included • Quark recombination: in TAMU, POWLANG, PHSD, MC@sHQ, LBT, Catania

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

Open HF hadron *R*_{AA}: theoretical model comparison

• POWLANG, BAMPS el, TAMU: do not include radiative energy loss \rightarrow determination of onset of radiative contributions by deviations from experimental data at a certain p_{T} • PHSD, MC@sHQ+EPOS2, BAMPS el.rad, Djordjevic: both elastic and radiative contributions are included • Quark recombination: in TAMU, POWLANG, PHSD, MC@sHQ, LBT, Catania

C. Terrevoli

Energy loss mechanisms, flavour dependence, radiative and collisional processes, suppression and recombination

Quarkonia: J/W RAA

Statistical hadronization model describes the measurement at low *p*_T, while the transport model agrees with data for all p_{T}

Suppression and regeneration of quarkonia

- at **Phenix**: larger amount of regeneration in medium at LHC
- Small dependence of R_{AA} at the LHC energies

C. Terrevoli

Energy Density

less suppressed J/Ψ at **ALICE** than

- Small dependence of R_{AA} at the LHC energies

regeneration

- Similar v₂ for charged particles and D mesons for
- Slightly higher v₂ for charged particles than D me
- indication of radial flow? mass scaling also in charm
- similar v_2 for J/Ψ for $p_T > 6$ GeV/c and $v_2(D) > v_2(J/\Psi)$
 - non-zero $J/\Psi v_2$ is likely dominated at low and in recombination that should inherit charm quark fl

charm V₂

 \rightarrow Positive charm hadrons v_2 observed

charm quarks largely thermalize in QGP until hadronization

$p_{\rm T}$ > 3 GeV/c				
esons at low p _T				
n sector?				
') at low p τ (different y-interval though)				
ntermediate p_{T} by J/ Ψ from			T the second	
OW	Charm is strongly coupled in Q			in QGP.

R_{AA} and v_2 **Comparison with models**

the charm and beauty interaction with the medium

Future physics goals for charm

The improved measurements are expected to offer new constraints to models and help gain further insights into the hot and dense medium created

baryon v_{2} , precise measurement of With the help of improved precision and statistics D_s and $J/\Psi v_2$ Role of recombination in hadronization? 0.3 ALICE Upgrade Simulation 0.25 Pb-Pb, $\sqrt{s_{NN}}$ =5.5 TeV, L_{int} = 10 nb⁻¹ 0.2 D⁰, 30-50% centr. ALICE Upgrade simulation D_s⁺, 30-50% centr. Pb-Pb $\sqrt{s_{NN}}$ = 5.5 TeV, centrality 0-20% Λ_{c}^{+} , 10-40% centr. 0.15 $L_{int} = 10 \text{ nb}^{-1}$ ree-guark model. Au-Au 200 Ge Ko extr three-quark Ko diquark model, Au-Au 200 GeV Ko extr diquark PHSD, D 0.05 --- TAMU, D 10 12 ALI-SIMUL-308763 ALICE Upgrade Projection, 10 nb⁻¹ 30 20 25 15 p_{τ} (GeV/c) 20 15 Pb-Pb 20-40% $\sqrt{s_{NN}}$ = 5.02 TeV, 2.5 < y < 4 $p_{_{\rm T}}$ (GeV/c) 0.15 ALI-SIMUL-30874 Inclusive J/ $\psi \rightarrow \mu^+ \mu$ (EP • Investigate deeper the low *p*_T regime 2 Charm and beauty baryons 0.05 More differential measurements Precise measurements of the QGP properties Transport Model (TAMU) -0.05 - Inclusive J/ψ Primordial J/ψ

arXiv:1812.06772v2

C. Terrevoli

10

6

8

-0.1

ALI-SIMUL-307152

Summary and conclusions

hadrons

Recent charm measurement presented

- Production cross section measurements:
- constrain theoretical calculations and input for models to describe kinematics modification in the QGP
- Particle ratios: sensitive to hadronization
- meson-to-meson ratios: universality of FF
- baryon-over-meson ratios: system dependent?
- coalescence+fragmentation and SHM describe data in Pb-Pb
- Nuclear modification factor:
- Mass ordering of R_{AA} and interplay of recombination, fragmentation, collisions and radiative energy loss, collectivity to describe R_{AA}
- J/psi R_{AA} : recombination and suppression needed to explain the measurements
- Elliptic flow: thermalization of charm quark in the medium, onset of QGP in p-Pb?

Run3: ready for the precision era of the QGP characterization: improved precision and new measurements to fully characterize the QGP and to further constrain theory

C. Terrevoli

Investigation of heavy quark interaction with the hot and dense medium created in heavy-ion collisions, from the production to their "journey" into the medium until the formation of heavy-flavour

Thanks !

Heavy-flavour production: particle ratios

- compatible with ratios measured in e⁺e⁻ and ep collisions
 - no dependency on **collision systems**
- agreement with models
- Universality of D-meson Fragmentation Functions

Particle species ratio at different energies: $\sqrt{s} = 5.02$, 7 TeV

no differences between D-meson ratios in different collision energies

D-meson ratios flat vs p_T and independent on the collision energy and collision system

WWND 2020

Cross section of charmed baryons: not described by pQCD-based models:

fragmentation in models from ee/ep: baryon fragmentation non-universal?

 Λ_c/D^0 in pp higher than in e⁺e⁻ and ep collisions, and models tend to underestimate the ratios

Colour reconnection [1] (reconnection between uncorrelated interactions), and increased number of higher-mass baryon states [2] among possible explanations for the enhancement

$\psi(2S) \operatorname{R_{ppb}} vs y and p_T$: theoretical models

LI-PREL-158661

C. Terrevoli

 $-\boxtimes R_{\rm pPb}^{\psi(2S)}(y_{\rm cms}) < 1$ $R_{\rm pPb}^{\psi(2S)}[8.16 \text{ TeV}] \sim R_{\rm pPb}^{\psi(2S)}[5.02 \text{ TeV}]$ $R_{\rm nPh}^{\psi(2S)} < R_{\rm nPh}^{\rm J/\psi}$

Comovers: particles produced in the interaction which move with the hadronizing cc pair

"CGC+ iCEM": soft color exchanges between cc hadronizing pair and comoving partons "Comovers": final-state interactions with the comoving medium

5

Charmed baryon nuclear modification factor: Λ_c

Further Investigation: Charmed baryon energy loss

arXiv:1906.03322

• Hint of smaller R_{AA} in semicentral collisions

R_{AA} and models

"Transport models" based on Boltzmann/Fokker-Plank/Langevin equations

TRANSPORT MODELS	Collisional energy loss	Radiative energy loss	Coalescence	Hydro/ dynamics
BAMPS J. Phys. G42 (2015) 115106	v	v	×	 V
LBT arXiv:1703.00822	v	V	v	v -
PHSD PRC 93 (2016) 034906	V	×	V	 V
POWLANG EPJC 75 (2015) 121	v	×	v	 V
TAMU Phys. Lett. B735 (2014) 445	 ✓ 	×	V	 ✓

pQCD based models

pQCD e-loss MODELS	Collisional energy loss	Radiative energy loss	Coalescence	Hydro	nF
CUJET3.0 JHEP 02 (2016) 169	~	~	×	×	
Djordjevic PRC 92 (2015) 024918	~	~	×	×	
MC@sHQ+EPOS PRC 89 (2014) 014905	~	~	~	~	
SCET JHEP 03 (2017) 146	~	~	×	×	

Table 11: Comparative overview of the models for heavy-quark energy loss or transport in the medium described in the previous sections.				MODEL		
Model	Heavy-quark	Medium modelling	Quark-medium	Heavy-quark	Tuning of medium-coupling	From:
	production		interactions	hadronisation	(or density) parameter(s)	J. Phys
Djordjevic et al.	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	Medium temperature	9 09300
[511-515]	no PDF shadowing	nuclear overlap	finite magnetic mass		fixed separately	
		no fl. dyn. evolution			at RHIC and LHC	
WHDG	FONLL	Glauber model	rad. + coll. energy loss	fragmentation	RHIC	-
[459, 519]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)	
		no fl. dyn. evolution				
Vitev et al.	non-zero-mass VFNS	Glauber model	radiative energy loss	fragmentation	RHIC	-
[422, 460]	no PDF shadowing	nuclear overlap	in-medium meson dissociation		(then scaled with $dN_{ch}/d\eta$)	
		ideal fl. dyn. 1+1d				
		Bjorken expansion				
AdS/CFT (HG)	FONLL	Glauber model	AdS/CFT drag	fragmentation	RHIC	-
[624, 625]	no PDF shadowing	nuclear overlap			(then scaled with $dN_{ch}/d\eta$)	
		no fl. dyn. evolution				
POWLANG	POWHEG (NLO)	2+1d expansion	transport with Langevin eq.	fragmentation	assume pQCD (or 1-QCD	-
[507-509, 585, 586]	EPS09 (NLO)	with viscous	collisional energy loss	recombination	U potential)	
	PDF shadowing	fl. dyn. evolution				
MC@sHQ+EPOS2	FONLL	3+1d expansion	transport with Boltzmann eq.	fragmentation	QGP transport coefficient	-
[528-530]	EPS09 (LO)	(EPOS model)	rad. + coll. energy loss	recombination	fixed at LHC, slightly	
	PDF shadowing				adapted for RHIC	
BAMPS	MC@NLO	3+1d expansion	transport with Boltzmann eq.	fragmentation	RHIC	-
[537-540]	no PDF shadowing	parton cascade	rad. + coll. energy loss		(then scaled with $dN_{ch}/d\eta$)	
TAMU	FONLL	2+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD	-
[491, 565, 606]	EPS09 (NLO)	ideal fl. dyn.	collisional energy loss	recombination	U potential	
	PDF shadowing		diffusion in hadronic phase			
UrQMD	PYTHIA	3+1d expansion	transport with Langevin eq.	fragmentation	assume 1-QCD	-
[608-610]	no PDF shadowing	ideal fl. dyn.	collisional energy loss	recombination	U potential	
Duke	PYTHIA	2+1d expansion	transport with Langevin eq.	fragmentation	QGP transport coefficient	-
[587, 628]	EPS09 (LO)	viscous fl. dyn.	rad. + coll. energy loss	recombination	fixed at RHIC and LHC	
	PDF shadowing		60		(same value)	

R_{pPb} models

- **CGC**: arXiv:1706.06728 •
- **FONLL** (JHEP 1210 (2012) 137, arXiv:1205.6344) • with EPPS16 nPDFs (Eur. Phys. J. C77 no. 3, (2017) 163, arXiv:1612.05741).
- Vitev et al: Phys.Rev. C80 (2009) 054902, arXiv: 0904.0032.
- Kang et al.: Phys. Lett. B740 (2015) 23–29, arXiv: • 1409.2494.
- Duke: Nucl. xPart. Phys. Proc. 276-278 (2016) 225-• 228, arXiv:1510.07520.
- **POWLANG**: JHEP 03 (2016) 123, arXiv:1512.05186.
- **FONLL** (JHEP 1210 (2012) 137, arXiv:1205.6344 • [hep-ph]) with **EPS09NLO** (JHEP 04 (2009) 065, arXiv:0902.4154)
- Blast wave calculation: Phys. Lett. B 728 (2014) 25, • arXiv:1307.6796
- Sharma et al: Phys. Rev. C 80 (2009) 054902, arXiv: 0904.0032

ALI-PUB-340012

Strong suppression in 0-10% central Pb-Pb collisions New **ALICE** Preliminary

First measurement of HF in Pb-Pb down to $p_T = 0$ at LHC

 $R_{\rm pPb}$ compatible with unity for $p_{\rm T}>3$ GeV/c

Strong suppression in Pb-Pb is due to final state effects!

