

System size scan of D meson R_{AA} and v_n using PbPb, XeXe, ArAr, and OO collisions at LHC

Jacquelyn Noronha-Hostler Collaborators: **Roland Katz, Caio A.G. Prado**, Alexandre A.P. Suaide <u>arXiv:1906.10768</u> & <u>arXiv:1907.03308</u>

When is fluid dynamics still applicable?

When do you have too few particles to use hydrodynamics?

Small scale

 $Kn \sim \frac{1}{\text{Large scale}} \sim 1$

When is fluid dynamics still applicable?

When do you have too few particles to use hydrodynamics?

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Collective flow effects (WWND19)

Sievert, JNH Phys. Rev. C100 (2019) no.2, 024904

- Hierarchy: Expect universal scaling only at low Npart (*dN/dy*) e.g.
 v₂, v₂{4}/v₂{2}
- Certain quantities (e.g. v_3 and SC(m, n)) universal across system size

Motivation 1: D meson scaling with system size

Can we understand system size dependence of energy loss? Comparisons between soft and hard sector?

Motivation 2: What makes theory match data?

What is the data actually telling us?

(Bayesian) Yingru Xe et al, Phys.Rev. C97 (2018) no.1, 014907

MODEL

DAB-MOD

C. Prado, JNH, R. Katz et al, Phys. Rev. C96, 064903 (2017)

Roland Katz, Caio A.G. Prado, Alexandre A.P. Suaide arXiv:1906.10768 & arXiv:1907.03308

- Heavy flavor (D and B mesons) package that allows for a variety of parameterized energy loss models or *relativistic Langevin models*.
- Coalescence

New additions

- Event-by-event relativistic viscous hydrodynamics v-USPhydro JNH et al, PRC88(2013)no.4,044916; PRC90(2014)no.3,034907
- pQCD FONLL calculations for initial quark distributions

Minimum 1000 initial conditions/centrality

Initial conditions: Trento vs. mckln

• Trento like IP-Glasma

Moreland, Bernhard, Bass Phys.Rev. C92 (2015) no.1,

011901

Hydro: Alba et al, Phys.Rev. D96 (2017) no.3, 034517

• mckln

Drescher et al, Phys. Rev. C74, 044905 (2006); Phys. Rev. C76, 041903 (2007); Phys. Rev. C75, 034905 (2007)

Hydro: JNH et al, Phys.Rev. C95 (2017) no.4, 044901

• At LHC run 2, Trento generally works best.

Hydro evolution: v-USPhydro **Heavy quark evolution:** Either parameterized energy loss or relativistic Langevin model

Hydrodynamic parameters tuned to reproduce soft observables

Updates to hydro background

mckln

JNH et al, Phys.Rev. C95 (2017) no.4, 044901

- Equation of State: S95n-v1 (from 2009)
- Viscosity $\eta/s = 0.05$
- Freeze-out $T_{FO} = 120 MeV$
- PDG05

mckln lower T_0 , shorter $\Delta \tau$.

Beware different hydro parameters

Trento

Alba et al, Phys.Rev. D96 (2017) no.3, 034517

- Equation of State: EOS2+1 from Lattice QCD
- Viscosity $\eta/s = 0.047$
- Freeze-out $T_{FO} = 150 MeV$
- PDG16+ [WB] Phys.Rev. D96 (2017) no.3, 034517 034517 $\Delta \tau$.

Heavy Quarks in a hot QGP

 Parameterized Energy loss model

 $\frac{dE}{dL} = -f(T, p, L)\zeta\Gamma_{flow}$

- Parameterized Energy loss fluctuations ζ Betz&Gyulassy JHEP 1408 (2014) 090
- Medium contribution

$$\Gamma_{flow} = \gamma \left[1 - v_{flow} \cos(\phi_q - \phi_{flow}) \right]$$

• Langevin Model (QCD+HTL) $dp_i = -\Gamma(\overrightarrow{p})p_i dt + \sqrt{dt}\sqrt{\kappa\rho_i}$ $\kappa = 2T^2/D$

- Diffusion coefficients from:
- M&T $D \propto 1/(2\pi T)$ Moore & Teaney Phys. Rev. C71, 064904 (2005)

• G&A running coupling

Gossiaux & Aichelin, Phys. Rev. C 78, 014904 (2008)

Energy loss fluctuations Gaussian

$$f(\zeta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-(\zeta - 1)^2/2\sigma^2\right]$$

Uniform

 $f(\zeta) = 0.5$ For $0 \le \zeta \le 2$ Linear

$$f(\zeta) = 2/3 - (2/9)\zeta$$
 for

$$0 \le \zeta \le 3$$

Energy loss fluctuations Gaussian

$$f(\zeta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-(\zeta - 1)^2/2\sigma^2\right]$$

Uniform

 $f(\zeta) = 0.5$ For $0 \le \zeta \le 2$ Linear

$$f(\zeta) = 2/3 - (2/9)\zeta$$
 for

$$0 \le \zeta \le 3$$

Hydro particlization: Cooper-Frye+decays **Heavy quark fragmentation:** Petersen fragmentation function+light/heavy quark coalescence

Semi-leptonic decays done in Pythia8

Path length dependence

Correlate 1 high p_T particle with 1(+) soft particles

- More high p_T particles are emitted aligned with the event plane
- High p_T particles sensitive to the path length (initial state)

First suggested in early 2000's

Xin-Nian Wang Phys.Rev. C63 (2001) 054902 ; Gyulassy, Vitev, Wang Phys.Rev.Lett. 86 (2001) 2537-2540

Azimuthal anisotropies (hard/heavy)

Scalar Product [1]- 1 soft+1 hard particle correlation

$$v_n\{SP\}(p_T) = \frac{\langle v_n^{soft} \, v_n^{hard}(p_T) \cos(n[\psi_n^{soft} - \psi_n^{hard}(p_T)]) \rangle}{\sqrt{\langle (v_n^{soft})^2 \rangle}}$$

Rapidity gap to suppress non-flow

Averaging over events [2] (\sim 5% effect theoretically [3])

- Calculated in 0.5% centrality bins
- $\langle \cdots \rangle \rightarrow$ multiplicity weighing
- 0.5% rebinned into 5% or 10%

[1] Luzum and Ollitrault PRC87 (2013) no.4, 044907; JNH, Betz, Noronha, Gyulassy Phys.Rev.Lett. 116 (2016) no.25, 252301
 [2] Bilandzic et al, PRC83(2011)044913; PRC89(2014)no.6,064904
 [3] Gardim, Grassi, Luzum, Noronha-Hostler, Phys. Rev. C 95, 034901 (2017); JNH, Betz, Gyulassy, Luzum, Noronha, Portillo, Ratti Phys. Rev. C 95, 044901 (2017)

PbPb results

Can D mesons "see" the difference between initial conditions?

D MESONS*: MCKLN VS TRENTO

Initial temperature

- Both mckln and TRENTO start at $\tau_0 = 0.6 fm$
- Mckln initial temperature less (outdated EOS) from Trento, Trento gives smaller ^v₂
- Connection between τ_0 and v_2 but T_0 also matters, EOS must be correct!

See also: Andres et al, arXiv:1902.03231 S. Shi arXiv:1808.05461 Ke et al, arXiv:1810.08177

How do energy loss models compare to Langevin?

Energy loss vs. Langevin

Energy loss vs. Langevin

Energy loss vs. Langevin

What roles does coalescence play?

Best fit

- **pT<5 GeV:** Langevin (Moore & Teaney)
 +coalescence
- **pT>5 GeV:** Constant Energy loss+Gaussian Energy Loss fluctuations+coalescence

SYSTEM SIZE

PROPOSAL FOR COLLISIONS $4^{0}Ar^{40}Ar$ $1^{6}O^{16}O$

arXiv:1812.06772

CERN-LPCC-2018-07 December 18, 2018

Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams

Report from Working Group 5 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

Hydro already worked well with XeXe collisions

Giacalone, JNH, Phys.Rev. C97 (2018) no.3, 034

TYPICAL EVENTS

PbPb and XeXe events larger, more elliptical.

ArAr and OO smaller and rounder.

Small systems are hotter

33

Sievert, JNH, <u>arXiv:1901.01319</u>

Comparing are best fit PbPb to XeXe collisions

Sensitivity to deformed Xe nucleus?

Giacalone, JNH et al, Phys.Rev. C97 (2018) no.3, 034904; ALICE Phys.Lett. B784 (2018) 82-95; CMS Phys.Rev. C100 (2019) no. 4, 044902; ATLAS Phys.Rev. C101 (2020) no.2, 024906

D meson v2 suppressed in "small" system

Different methods to compare system

R. Katz, JNH et al, <u>arXiv:1907.03308</u>

- Comparing Central collisions: as system sized ↓ system is more elliptical
- Comparing mid-central collisions: as system sized ↓ system, shape is nearly constant

Central collisions

R. Katz, JNH et al, arXiv:1907.03308

• $R_{AA} \rightarrow 1$ as the system size decreases

- v₂ ~ *const* as the system size decreases (compensating effect of ↑ in eccentricities with ↓ system size)
- $v_3 \Downarrow$ with \Downarrow system size (see paper)

Mid-Central collisions

R. Katz, JNH et al, <u>arXiv:1907.03308</u>

• $R_{AA} \rightarrow 1$ as the system size decreases

• v_2 and $v_3 \Downarrow$ with \Downarrow system size (eccentricities ~ const.)

Motivation 3: SHEE: Soft-Hard Event Engineering

SHEE: JNH et al Phys.Rev.Lett. 116 (2016) no.25, 252301;
 Phys.Rev. C95 (2017) no.4, 044901
 Heavy: Prado et al (JNH) Phys.Rev. C96 (2017) no.6, 064903

ALICE D meson SHEE: arXiv:1809.09371

Consequences:

Soft-Hard correlations: Gossiax Nucl.Phys. A967 (2017) 672-675

Constraining soft first, then calculate hard: S. Shi et al <u>arXiv:1808.05461</u>

Constraining τ_0 Andres et al <u>arXiv:</u> <u>1902.03231</u>

Flow within E loss modelsBrewer etal JHEP 1802 (2018) 015015

Constraining ε_0 Djordjevic <u>arXiv:</u> 1903.06829

Multi particle cumulants

Correlate 1 high p_T particles with n-1 soft particles.

$$\frac{v_n\{4\}(p_T)}{v_n\{2\}(p_T)} = \frac{v_n\{4\}}{v_n\{2\}} \left[1 + \left(\frac{v_n\{2\}}{v_n\{4\}}\right)^4 \underbrace{\left(\frac{\langle v_n^4 \rangle}{\langle v_n^2 \rangle^2} - \frac{\langle v_n^2 V_n V_n^*(p_T) \rangle}{\langle v_n^2 \rangle \langle V_n V_n^*(p_T) \rangle}\right)}_{soft-hard fluctuations} \right]$$
(1)

If there are no difference between soft and hard fluctuations

$$\frac{v_n\{4\}(p_T)}{v_n\{2\}(p_T)} = \frac{v_n\{4\}}{v_n\{2\}}$$

JNH et al Phys.Rev. C95 (2017) no.4, 044901

v2 fluctuations of D mesons

R. Katz, JNH et al, arXiv:1906.10768

System size effects in fluctuations

Fluctuations at high p_T more sensitive to system size

Soft Hard engineering at $p_T > 8 \text{ GeV}$ R. Katz, JNH et al, arXiv:1906.10768

Sensitive to energy loss description and fluctuations

Soft-Hard Event Engineering at $0 < p_T[GeV] < 8$

Effect swamped by coalescence

45

R. Katz, JNH et al, arXiv:1906.10768

CONCLUSIONS

Conclusions and Outlook

- DAB-MOD is a modular heavy flavor code that can compare energy loss vs. Langevin directly with the same hydrodynamic backgrounds
 - Langevin works best at low pT and Energy loss at high pT
- Comparing PbPb, XeXe, ArAr, OO collisions:
 - D mesons sensitive to deformed nucleus
 - v2 of D mesons ~const in 0-10% and sensitive to system size in 30-50%
- More RHIC/sPHENIX results to come.

Happy Birthday, John!

BACKUP

XE DEFORMATION MEASURED

Fragmentation & Coalescence

- Create D mesons at decoupling temperature $T_d \ge T_{FO}$
- Fraction of heavy quarks z from Peterson frag. function $f(z) \propto \left[z \left(1 - \frac{1}{z} - \frac{\epsilon_Q}{(1-z)} \right) \right]$

p_{T} dependence of $v_2{4}/v_2{2}$ from soft vs. hard fluctuations

pT dependence of fluctuations

Multiparticle cumulants

Reconstructing the v_n distribution with cumulants

$$\begin{split} v_n\{2\}^2 &= \langle v_n^2 \rangle, \\ v_n\{4\}^4 &= 2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle, \\ v_n\{6\}^6 &= \frac{1}{4} \Big[\langle v_n^6 \rangle - 9 \langle v_n^2 \rangle \langle v_n^4 \rangle + 12 \langle v_n^2 \rangle^3 \Big], \\ v_n\{8\}^8 &= \frac{1}{33} \Big[144 \langle v_n^2 \rangle^4 - 144 \langle v_n^2 \rangle^2 \langle v_n^4 \rangle + 18 \langle v_n^4 \rangle^2 \\ &+ 16 \langle v_n^2 \rangle \langle v_n^6 \rangle - \langle v_n^8 \rangle \Big], \end{split}$$

where collectivity $\rightarrow v_n\{2\} > v_n\{4\} \sim v_n\{6\} \sim v_n\{8\}$ but there are differences between higher order cumulants!

Soft-hard multi particle cumulants

Scalar product, v_2 {2}(p_T) $\equiv v_2$ {*SP*}

Avoids well-known problems with the event-plane method comparing between theory and experiments. See Luzum and Ollitrault PRC87 (2013) no.4, 044907

 v_n {2}(p_T) Two particle correlation (one soft, one hard)

$$\frac{\langle v_n^{soft} \, v_n^{hard}(p_T) \cos\left(n \left[\psi_n^{soft} - \psi_n^{hard}(p_T)\right]\right) \rangle}{\sqrt{\left\langle \left(v_n^{soft}\right)^2 \right\rangle}}$$

v_2 {4}(p_T) Four particle correlation (three soft, one hard)

$$\frac{2\langle |v_n^{soft}|^2\rangle\langle v_n^{soft}v_n^{hard}(p_T)\cos\left[n\left(\psi_n^{soft}-\psi_n^{hard}(p_T)\right]\right)\rangle-\langle (v_n^{soft})^3v_n^{hard}(p_T)\cos\left[n\left(\psi_n^{soft}-\psi_n^{hard}(p_T)\right]\right)\rangle}{(v_n^{soft}\{4\})^{3/4}}$$

Constraints on initial conditions

Giacalone, JNH, Ollitrault Phys.Rev. C95 (2017) no.5, 054910

