Performance Tracking across the Injector Complex

S. Albright, H. Damerau, A. Huschauer, V. Kain, G. Rumolo

Input from LIU project

- LIU beams will be commissioned during run 3
- Goals in terms of intensity and brightness are defined for each year
- The performance of the injectors will be measured with respect to performance goals
 - → Peak performance
 - → Reproducibility

→ performance needs to be tracked

Proposed means for LIU beam performance tracking should also be useable for FT performance tracking.

Currently private web pages per machine.

2 types of tracking required

Machine specific data tracking

- Two aspects:
 - normal equipment data logging
 - Online monitoring of certain parameters and analysis (event based analysis) with GUI in the control room
 - Event based analysis for everybody?

Performance tracking per beam type

- Across complex online through web
- Need to track beam through complex → unique SC number and beam ID

Performance metric per beam type across complex

o LHC beams:

- Per machine: Transverse and longitudinal emittance
 - Average and bunch-by-bunch spread
- Per machine: injected intensity, intensity extracted/dumped
 - Total, by bunch, bunch-by-bunch spread, splitting symmetry in PS
- Total intensity extracted towards LHC beam 1, beam 2 for which fill number

o FT beams:

- **SPS FT beam**: splitting efficiency (PS), 200 MHz component (PS), emittance island-by-island, SPS transmission, SPS intensity extracted and on targets, losses in LSS2, emittance and intensity (PSB), spill quality SPS, extraction losses (PS)
- **NTOF**: intensity on target, transmission through PS cycle and until target, integrated intensity per supercycle, position on target, bunch length, evolution of intensity on target versus prediction
- AD: intensity extracted towards AD, bunch length and phase at extraction (PS)
- EAST: spill quality, intensity extracted, losses in extraction region
- ISOLDE: intensity extracted, transmission

Why event based analysis?

- Event = cycle
- → require practical grouping of data
 - Storage and retrieval
- Most important aspect: online, interlinked analysis
 - Centralize and re-use analysis results within online analysis
 - E.g. beam context analysis can be input to other analysis modules
- Events need to have (additional) identifiers: destination, LHC fill number (if destination LHC), SC number, beam ID
 - Needed for performance tracking
 - Destination not always ideal: LHC beams and emittance measurements in PSB
 - To be discussed

○ → if you want, will organise a demo one of the next meetings

Performance per beam type across complex

- Needs to be online and web based (also visible from outside)
- Plots need to be continuously populated no waiting for data from NXCALS
 - Background process to fill data in pickles?
 - Scripts with minor analysis for advanced plotting
 - Need interactive scientific plotting
 - Plots to be made by the "experts". Use BOKEH?
 - https://bokeh.pydata.org/en/latest/

Example – webpages, scientific plotting

http://test-project-sps-postls2-commissioning.web.cern.ch/test-project-sps-postls2-commissioning/lhc.html

Ideas on how to track beam data through chain

- Data retrieval API (from probably NXCALS) must be adapted according to identifiers:
 - Identifiers unique combination, get through telegram
 - Need methods like
 - rangeOfSCnumbersforTimeSpan(timeSpan)
 - getBeamIdsforSCnumber(scNumber)
 - getTimeSeriesDataForSCnumberAndBeamID(scNumber, beamI
 d, timeSeriesVarialbes)

Additional requirement for CO

 Another (independent) requirement for application development emerged in discussions:

- Possibility to acquire not only last value from equipment (option 1), but last values for a given time span (option 2) in transparent manner
 - Normal get or subscribe
 - Get with timespan goes to NXCALS without having to change APIs

Summary, Priorities, Requirements, Deadlines

- First priority: performance tracking web pages for all beam types
 - Unique identifiers for SC number and beam
 - Background process to retrieve data ready for plotting
 - Plots "prepared" by users, ideally in python
 - Needs to be ready for start-up: mid 2020
- Second priority: event based analysis: cycle-by-cycle
 - Centralized analysis, reuse analysis results as input to other analysis
 - Republish results → show in GUI, use for performance tracking
 - Results need to be ready before end of next cycle: latency requirements to be defined for small machines
 - Store grouped as event for playback
 - Needs to be developed 2021/22 for machines other than SPS

