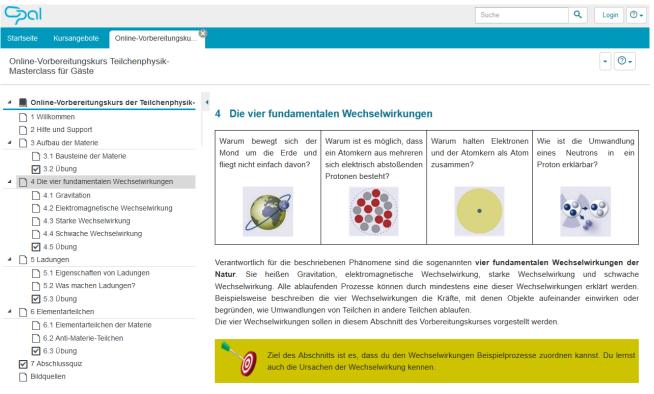


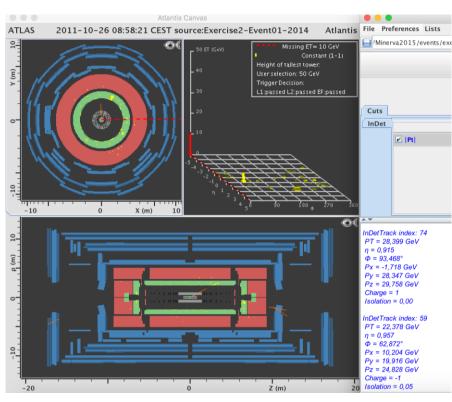
ERPROBUNG UND EVALUIERUNG DES VORBEREITUNGSKURSES FÜR DIE TEILCHENPHYSIK-MASTERCLASS DES

NETZWERK

TEILCHENWELT



Vortrag zur Bachelorarbeit von Inga Woeste Bonn, den 30.09.2019


Gliederung

- 1. Vorstellung des Online-Vorbereitungskurses
- 2. Intention der Arbeit
- 3. Ergebnisse der Evaluation durch die Schüler*innen
- 4. Wie effektiv ist der Vorbereitungskurs?
- 5. Verbesserungsvorschläge aus der Befragung der Schüler*innen und Vermittler*innen
- 6. Empfohlene Durchführungsvariante
- 7. Fazit
- 8. Ausblick

Online-Vorbereitungskurs *

Teilchenphysik-Masterclass

Ziele: Vermittlung von Grundlagen im Bereich der Teilchenphysik

Vorbereitung auf die Masterclass

inhaltliche Entlastung und Fokussierung der Masterclass

• **Zeitrahmen:** ca. 70 min

Inhalte: - Aufbau der Materie
 (Elementarteilchen als kleinste Bausteine der Materie)

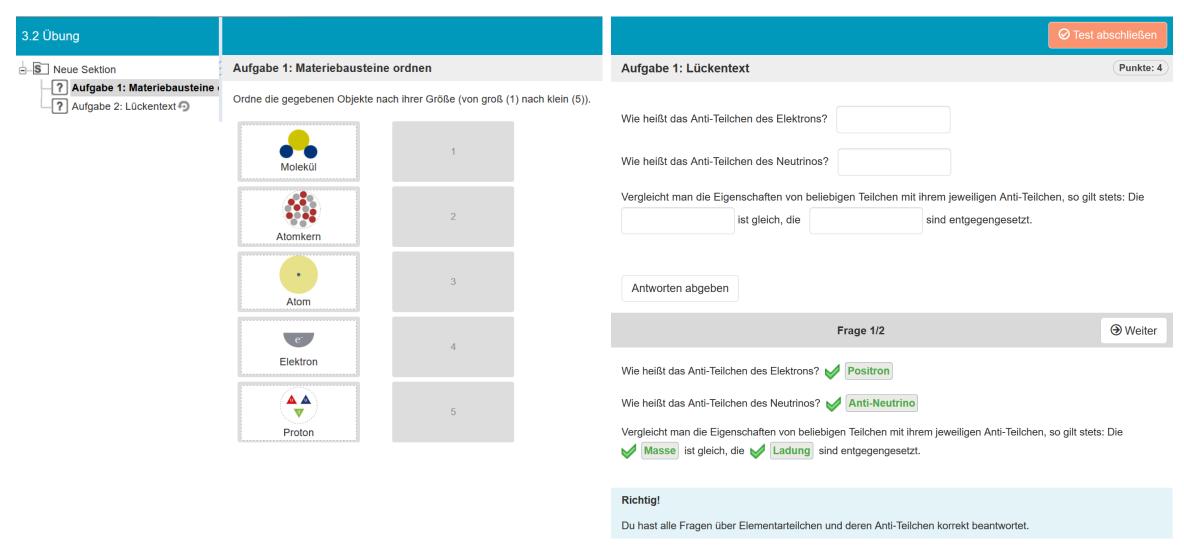
- Die vier fundamentalen Wechselwirkungen
 (Gravitation, elektromagnetische/starke/schwache Wechselwirkung)
- Eigenschaften von Ladungen
 (Additivität, Quantelung, Erhaltung; Ladungen als Ursache von Wechselwirkungen)
- Elementarteilchen der Materie und der Anti-Materie
- Übungen und Animationen zu den Kapiteln und ein Abschlussquiz

Kristal

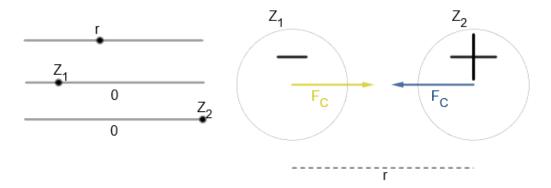
Molekül

Atom

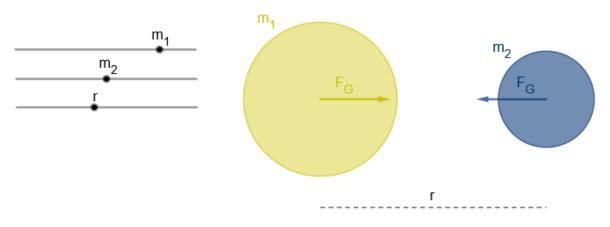
Atomker



Proton, Neutron



Quarks



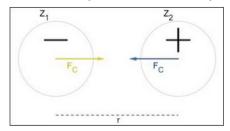
Animation Coulombkraft

Animation Gravitationskraft

4.2. Elektromagnetische Wechselwirkung

Als Zweites wollen wir uns mit der elektromagnetischen Wechselwirkung beschäftigen. Auch diese Wechselwirkung spielt in unserem Alltag eine große Rolle.

Welche Beispiele gibt es für die elektromagnetische Wechselwirkung?


Beispielsweise lässt sich mit Hilfe der elektromagnetischen Wechselwirkung erklären, warum sich eine Kompassnadel Richtung Norden ausrichtet oder weshalb wir Radio hören können. Neben den alltäglichen Beispielen ist die elektromagnetische Wechselwirkung Ursache von Phänomenen auf atomarer Ebene. Sie ist die Ursache, weshalb Elektronen und Atomkerne als Atom zusammenhalten. Sie erklärt auch die chemische Bindung zwischen Atomen in Molekülen.

Wie kann die elektromagnetische Wechselwirkung erklärt werden?

Ursache der elektromagnetischen Wechselwirkung ist die **elektrische Ladung** von Teilchen. Diese ist dir aus der Schule bekannt. Die elektrische Ladung Q eines Teilchens ist das Produkt der Elementarladung Q eines Teilchens ist das Produkt der Elemen

Wie verhalten sich Teilchen, die eine elektrische Ladung besitzen?

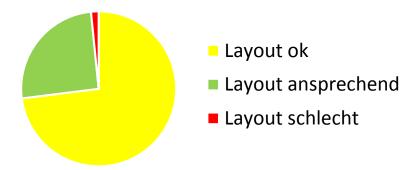
Betrachten wir nun (ähnlich wie bei der Gravitation) zwei Teilchen, die sich im Abstand r voneinander befinden. Die Teilchen besitzen die elektrischen Ladungszahlen Z₁ und Z₂

Veranschaulichung Coulombkraft zwischen zwei Teilchen

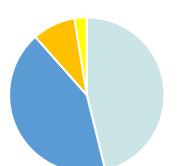
Für die elektromagnetische Wechselwirkung gibt es, analog zur Gravitationskraft bei der Gravitation, auch eine Kraft. Sie wird Coulombkraft genannt. Mathematisch gilt eine ähnliche Proportionalität wie bei der Gravitationskraft: $F_c \sim \frac{Z_z Z_z}{z^2}$ Was saut uns diese Formel jetzt?

Die Coulombkraft ist umso größer, je größer der Betrag der elektrischen Ladungszahl eines Körpers ist. Sie ist auch umso größer, je kleiner der Abstand der Teilchen ist. Die Reichweite der elektromagnetischen Wechselwirkung ist wie bei der Gravitation unendlich.

Wie in der Abbildung oben, siehst du in der folgenden Animation zwei Teilchen in einem bestimmten Abstand ${\bf r}$ zueinander. Du hast die Möglichkeit den Abstand ${\bf r}$ der Teilchen oder ihre elektrischen Ladungszahlen ${\bf Z}_1$ und ${\bf Z}_2$ zu ändern, indem du die Schieberegler verstellst. Anschließend kannst du beobachten, wie sich die Länge und Richtung der resultierenden Coulombkraft verändern.


2. Intention der Arbeit

Erprobung und Evaluierung des Vorbereitungskurses:


- Ist der Vorbereitungskurs mit Schulklassen durchführbar?
- Sind die Kursinhalte für die Schüler*innen verständlich?
- Ist der Vorbereitungskurs beim Verständnis der Masterclass hilfreich?
- Sind **Verbesserungen** am Vorbereitungskurs notwendig?

3. Ergebnisse der Evaluation durch die Schüler*innen

- Bewertung des Online-Vorbereitungskurs insgesamt:
- Bewertung des Layouts:

- Aufgetretene Probleme:
 - wiederholtes Neuladen der Seite
 - mehrmalige Passworteingabe
 - Animationen haben nicht funktioniert
 - Übungen haben nicht funktioniert

1,8 (1 = sehr gut, 4 = schlecht)

Was hat den Schüler*innen gefallen?:

4.1. Gibt es einen Lernerfolg?

- Kenntnis einiger Elementarteilchen wurde dazugewonnen
- Vorstellung des Atoms als kleinster Baustein der stabilen Materie sowie der von Protonen und Neutronen als Elementarteilchen wurde revidiert
- Substruktur des Protons und die vier fundamentalen Wechselwirkungen wurden kennengelernt
- **→ Lernerfolg**
- Photon als Austauschteilchen der elektromagnetischen Wechselwirkung wurde nicht erfolgreich vermittelt
- → Optimierungspotenzial

4.2. Welche Unterschiede gibt es zwischen Schüler*innen mit und ohne Vorkurs?

Korrekte Antworten auf die Wissensabfrage	Ohne Vorkurs	Mit Vorkurs
Elementarteilchen als kleinste Bausteine der stabilen Materie	0% (60% Atom)	17% (0% Atom)
Nennung des Elektrons / Quarks als Elementarteilchen	60% / 30%	50% / 42%
Substruktur des Protons besteht aus <i>Up- und Down-Quarks</i>	0%	75%
Gravitation, elektromagnetische/starke und schwache Wechselwirkung als die vier fundamentalen Wechselwirkungen	0%	67%
3 Farbladungen als Ursache der starken Wechselwirkung	0%	50%
Photon als Austauschteilchen der elektromagnetischen Wechselwirkung	0%	8%
Additivität, Quantelung und Erhaltung als die drei Eigenschaften von Ladungen	0%	8%
Positron als Anti-Teilchen des Elektrons	20% (60% Proton)	33% (0% Proton)
Teilchen haben die <i>gleiche Masse</i> und <i>entgegengesetzte Ladung</i> im Vergleich zu ihren jeweiligen Anti-Teilchen	10%	50%

[→] Schüler*innen mit Teilnahme am Vorkurs haben ein **grundlegenderes Vorwissen** im Bereich der Teilchenphysik

4.3. Wie wirksam ist das Arbeitsblatt?

4. Die Vorgänge in der Natur können mithilfe der Gravitation und drei anderen fundamentalen Wechselwirkungen beschrieben werden. Welche sind das, was sind ihre Ursachen und Austauschteilchen (Botenteilchen) und wo wirken diese in der Teilchenphysik?

Wechselwirkung	Ursache	Austauschteilchen	Wirkung in der Teilchenphysik
elektromagnetisch	elektr. Ladung	Photon	Elektronen und Atomkern halten als Atom zusammen
stark			
schwach			

5. Welche Elementarteilchen hast Du im Laufe des Kurses kennengelernt? Welche elektr. Ladungen haben diese?

Elementarteilchen	Elektron		
elektr. Ladung	-1e		

4.3. Wie wirksam ist das Arbeitsblatt?

Korrekte Antworten auf die Wissensabfrage	Ohne Arbeitsblatt	Mit Arbeitsblatt
Elementarteilchen als kleinste Bausteine der stabilen Materie	28%	56%
Nennung des Elektrons / Quarks als Elementarteilchen	39% / 67%	76% / 76%
Substruktur des Protons besteht aus <i>Up- und Down-Quarks</i>	58%	88%
Gravitation, elektromagnetische/starke/schwache Wechselwirkung als die vier fundamentalen Wechselwirkungen	61%	76%
3 Farbladungen als Ursache der starken Wechselwirkung	22%	27%
Photon als Austauschteilchen der elektromagnetischen Wechselwirkung	3%	50%
Additivität, Quantelung und Erhaltung als die drei Eigenschaften von Ladungen	3%	29%
Positron als Anti-Teilchen des Elektrons	25%	94%
Teilchen haben die <i>gleiche Masse</i> und <i>entgegengesetzte Ladung</i> im Vergleich zu ihren jeweiligen Anti-Teilchen	31%	88%
Erklärung des Zusammenhangs von Teilchenbeschleunigern und Detektoren	17%	35%
Erklärung, was das CERN ist	81%	88%

[→] Arbeitsblatt als effektive Möglichkeit der schriftlichen Ergebnissicherung führt zu gesteigertem Lernerfolg

4.4. Welche Vorteile hat die Teilnahme im Hinblick auf die Masterclass?

- positive Auswirkungen auf die **Mitarbeit** der Schüler*innen
 - weniger inhaltliche Verständnisschwierigkeiten
 - können gezielter Fragen formulieren
 - keine Überforderung durch großen Informationszuwachs

- 4.4. Welche Vorteile hat die Teilnahme im Hinblick auf die Masterclass?
- positive Auswirkungen auf die **Mitarbeit** der Schüler*innen
 - weniger inhaltliche Verständnisschwierigkeiten
 - können gezielter Fragen formulieren
 - keine Überforderung durch großen Informationszuwachs
- interaktive **Gestaltung** durch die Vermittler*innen
 - verstärkter Einbezug der Schüler*innen durch Fragestellungen zu Kursinhalten
 - Aufbau auf bekanntem Vorwissenskontingent

4.4. Welche Vorteile hat die Teilnahme im Hinblick auf die Masterclass?

- positive Auswirkungen auf die **Mitarbeit** der Schüler*innen
 - weniger inhaltliche Verständnisschwierigkeiten
 - können gezielter Fragen formulieren
 - keine Überforderung durch großen Informationszuwachs
- interaktive Gestaltung durch die Vermittler*innen
 - verstärkter Einbezug der Schüler*innen durch Fragestellungen zu Kursinhalten
 - Aufbau auf bekanntem Vorwissenskontingent
- Fokussierung der Masterclass
 - inhaltliche Kürzung der Einführungsvorträge möglich
 - mehr Zeit für weiterführende Wissensvermittlung und praktische Aufgaben
 - Verhinderung des Zeit- und Leistungsdrucks

5. Verbesserungsvorschläge aus der Befragung der Schüler*innen und Vermittler*innen

- Technische Vereinfachung der Handhabung
- Beseitigung inhaltlicher Verständnisschwierigkeiten
 - spezifischere Beschriftungen der Abbildungen
 - Ergänzung des Bildmaterials
 - optimierte Aufteilung von Zusatzinformationen und Kapiteltexten
 - Hinweisen auf spätere Erklärung neuer Begriffe
 - Arbeitsaufträge klarer formulieren
- **Didaktische** Verbesserungen
 - Layout motivierender und kompakter gestalten
 - → mehr Absätze, einheitliche Formatierung, Abbildungen in den Textfluss einbetten
 - zu lange Texte kürzen
 - Ausblick zum Standardmodell

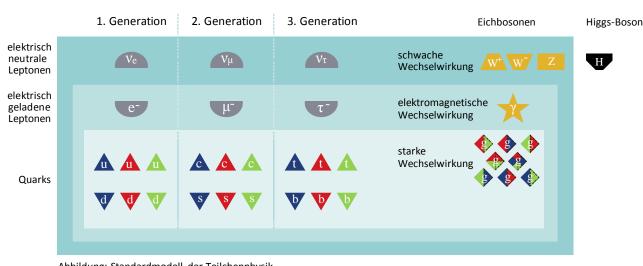
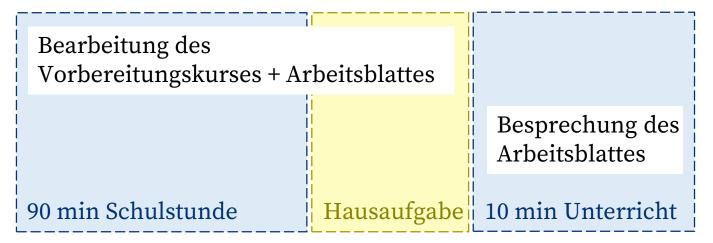
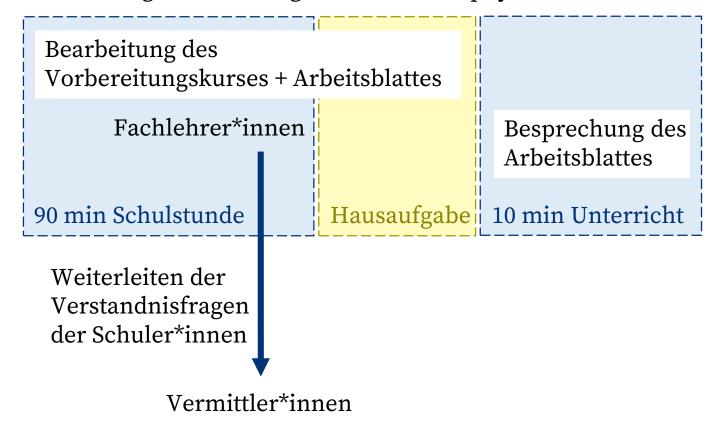
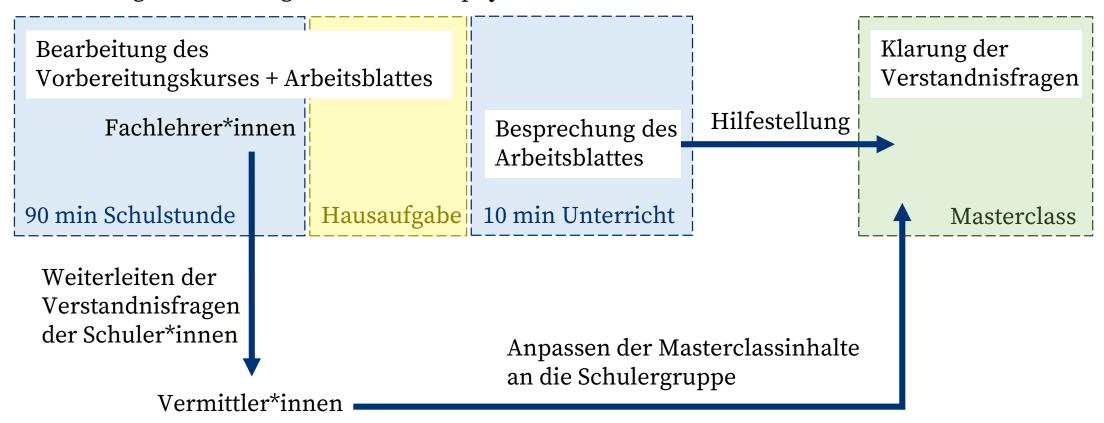



Abbildung: Standardmodell der Teilchenphysik

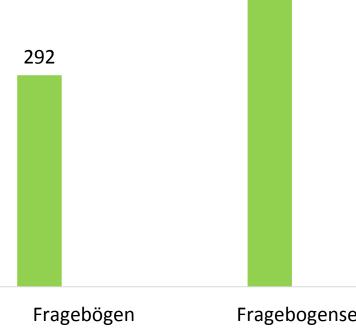

6. Empfohlene Durchführungsvariante

Vermittlung der Grundlagen der Teilchenphysik


6. Empfohlene Durchführungsvariante

Vermittlung der Grundlagen der Teilchenphysik

6. Empfohlene Durchführungsvariante


Vermittlung der Grundlagen der Teilchenphysik

7. Fazit

Vorbereitungskurs ist mit Schulklassen durchführbar, effektiv und für die Masterclass notwendig, wenn die Schüler*innen kein/wenig Vorwissen im Bereich der Teilchenphysik mitbringen

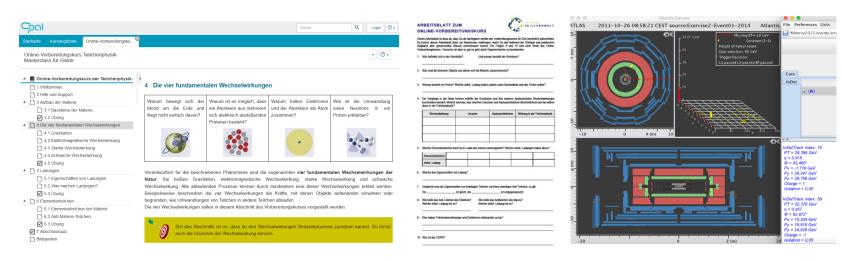
- → erhöhte **Aktivität** und **interaktive Gestaltung** in der Masterclass
- empfohlene Durchführung innerhalb einer **Doppelstunde** + ggf. Hausaufgabe
- Erarbeitung von Verbesserungsvorschlägen auf der Grundlage der Evaluationsergebnisse der Schüler*innen und Vermittler*innen
- Bestätigung der Wirksamkeit des Arbeitsblattes

Lehrer*innen Vermittler*innen

11

Schüler*innen

Fragebogenseiten


504

68

8. Ausblick

Einbettung des Vorbereitungskurses + Arbeitsblatt in den Rahmen der Masterclass:

- Einführungsvorträge inhaltlich kürzen
- Kursinhalte nur zu Beginn wiederholen
- auf Kernaspekte fokussieren → Inhalte anpassen

Vorbereitungskurs

Arbeitsblatt

Masterclass

Literaturverzeichnis

- [1] INSTITUT FÜR KERN-UND TEILCHENPHYSIK UND TU DRESDEN (Hrsg.). Online-Vorbereitungskurs der Teilchenphysik-Masterclass für Gäste. Webseite, 2019. In: https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/17635573762?1; [18.08.2019]
- [2] INSTITUT FÜR KERN-UND TEILCHENPHYSIK UND TU DRESDEN (Hrsg.), Besser vorbereitet auf die Teilchenphysik-Masterclass. Webseite, 2019. In: https://www.teilchenwelt.de/aktuelles/aktuelles-aus-dem-netzwerk/2019/damit-die-jugendlichen-besser-auf-die-masterclass-vorbereitet-sind-hat-die-angehende-lehrerin-carolin-diesel-einen-vorbereitungskurs-entwickelt/; [18.08.2019]
- [3] PHYSIKWERKSTATT-RHEINLAND. Experimente und Messungen Hansen. Vorträge für die Teilchenphysik-Masterclasses, 2016.
- [4] INSTITUT FÜR KERN-UND TEILCHENPHYSIK UND TU DRESDEN (Hrsg.), Masterclasses Teilchenforscher für einen Tag, 2019, In: https://www.teilchenwelt.de/angebote/masterclasses/; [12.08.2019]
- [5] C. DIESEL. Entwicklung und Umsetzung eines Online-Vorbereitungskurses für die Teilchenphysik-Masterclass. Masterarbeit, Technische Universität Dresden, S. 72 f. Webseite, 2018. In: https://www.teilchenwelt.de/material/materialien-fuer-lehrkraefte/weitereunterrichtsmaterialien/; [10.08.2019]
- [6] INSTITUT FÜR KERN-UND TEILCHENPHYSIK UND TU DRESDEN (Hrsg.), Unser Basisprogramm Masterclass, 2019, In: https://www.teilchenwelt.de/aktuelles/aktuelles-aus-dem-netzwerk/2019/unser-basisprogramm-masterclass/; [23.08.2019]
- [7] WLH (Hrsg.), Von der Idee zum erfolgreichen Unternehmen, 2016, In: https://wlh.eu/uploads/pics/Gruendungsidee_MH_Fotolia_01.jpg; [23.08.2019]
- [8] JOACHIM HERZ STIFTUNG (Hrsg.). Teilchenphysik. Unterrichtsmaterial ab Klasse 10. addprint AG, Bannewitz, 2018.
- [9] INSTITUT FÜR KERN-UND TEILCHENPHYSIK UND TU DRESDEN (Hrsg.). Vorträge für Teilchenphysik-Masterclasses. Webseite, 2019. In: https://wiki.teilchenwelt.de/index.php?title=Vortr%C3%A4ge_f%C3%BCr_Teilchenphysik-Masterclasses; [22.08.2019]

Der Online-Vorbereitungskurs

https://bildungsportal.sachsen.de/opal/auth/RepositoryEntry/17635573762;jsessionid=535D8B322FD1792AD41FC6C955D3980D.opalN3?0

Vorgehensweise beim Praxistest mit Schulklassen

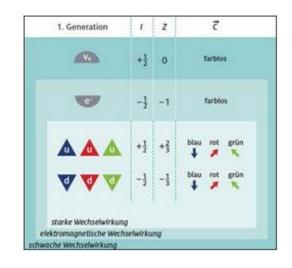
Block	Schulform	Kurs	Angebot	Intention	
1	Gymnasium	LK 12 (18 S.)	Masterclass	Beobachtung d	ler Masterclass
2	Berufskolleg	GK 11 (17 S.)/	Vorkurs	Detaillierte Eva	luation des Vorkurses
		GK 11 (10 S.)	Masterclass		
3	Gymnasium	GK 11 (24 S.)	Vorkurs	Direkter Grupp	envergleich in der Masterclass in
			Masterclass	Abhängigkeit v	on der Teilnahme am Vorkurs
4	Gymnasium	9. Klasse (16 S.)	Vorkurs	Teilweise auße	runterrichtliche Durchführung des
		DiffKurs	Masterclass	Vorkurses	
5	Gymnasium	LK 11 (5 S.)/	Vorkurs		K und GK bei der Einführung des
		GK 11 (21 S.)	Masterclass	Arbeitsblattes	

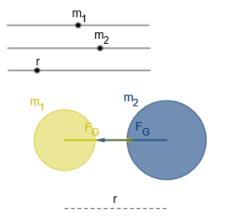
- ☐ Überprüfung des Vorwissens zu Beginn des Vorkurses
- detaillierte Evaluation des Vorkurses
- kurze Evaluation des Vorkurses
- Bearbeitung und Besprechung des Arbeitsblattes
- Fragebogen für Fachlehrer*innen

- Überprüfung des Wissensstandes zu Beginn der Masterclass
- Feedbackbogen zum Konzept von Vorkurs und Masterclass
- Beobachtung der Schüler*innen

Vorgehensweise beim Praxistest mit Schulklassen

- Evaluation des Vorbereitungskurses durch die Schüler*innen
- Wie effektiv ist der Vorbereitungskurs?
 - Gibt es einen Lernerfolg?
 - Wie wirksam ist das Arbeitsblatt?
 - Welche **Vorteile** hat die Teilnahme im Hinblick auf die Masterclass?


- Überprüfung des Vorwissens zu Beginn des Vorkurses
- detaillierte Evaluation des Vorkurses
- kurze Evaluation des Vorkurses
- Bearbeitung und Besprechung des Arbeitsblattes
- Fragebogen für Fachlehrer*innen


- Überprüfung des Wissenstandes zu Beginn der Masterclass
 - Feedbackbogen zum Konzept von Vorkurs und Masterclass
 - Beobachtung der Schüler*innen

Verbesserungsvorschläge aus der Befragung der Schüler*innen und Vermittler*innen

Technische Vereinfachung der Handhabung

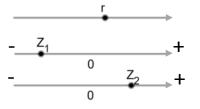
- einmalige Passworteingabe
- Inhaltsverzeichnis dauerhaft einblenden
- handhabbare Kurs-Version für Smartphones entwickeln
- Grafiken größer/schärfer abbilden und durch Anklicken vergrößert darstellen
- Variablen und Formeln nicht als unscharfe Bilder einfügen
- in Animationen **Schieberegler** fixieren
- Kontrollmöglichkeit der Übungsaufgaben vereinfachen
- Wiederholungsmöglichkeit der falsch beantworteten Übungsaufgaben einrichten

Verbesserungsvorschläge aus der Befragung der Schüler*innen und Vermittler*innen

Beseitigung inhaltlicher Verständnisschwierigkeiten

Animationen und Grafiken:

- spezifischere Beschriftungen der Abbildungen und Schieberegler
- Ergänzung des Bildmaterials


Texte:

- Atomkern und -hülle klar trennen
- auf ggf. spätere Erklärung neuer Begriffe hinweisen
- Austauschteilchen im Kapiteltext erwähnen
- Farbladungsvektor erst in Zusatzinformation erklären

• Übungen:

• Arbeitsaufträge klarer formulieren (z.B. "Fehlersuche")

Verbesserungsvorschläge aus der Befragung der Schüler*innen und Vermittler*innen

Didaktische Verbesserungen

Layout:

- motivierender und kompakter gestalten
- → mehr Absätze, einheitliche Formatierung, Grafiken/Animationen in den Textfluss einbetten

Inhalt:

- zu lange Texte kürzen
- Ausblick zum Standardmodell

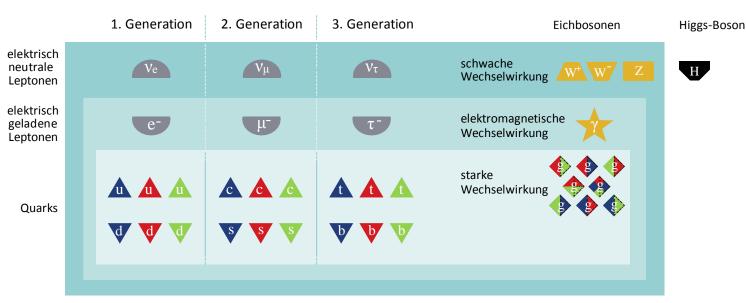


Abbildung: Standardmodell der Teilchenphysik

Der Evaluationsbogen

- 3. Aufbau der Materie
- 3.1. Bausteine der Materie

Text	O zu kurz	O passende Länge	O zu lang	
	O verständlich	O unverständlich, nicht	verstanden habe ich:	
Bilder	Folgendes war	zu klein/unscharf:		
	Dieses Bild hab	oe ich nicht verstanden:		
	O Die Bilder	haben mich beim Verstä	ndnis der Inhalte unte	rstützt.

3.2. Übung

$Aufgabe\ 1:\ Materiebausteine\ ordnen$

Test

O Ich konnte den Test nicht starten.

Aufgabe

- O Ich habe zuerst nicht verstanden, was ich machen soll.
- O Die Aufgabe ist verständlich.
- O Ich habe zuerst nicht gewusst, wie man die Objekte verschieben kann.
- O Das Verschieben der Objekte mit der Maus hat nicht funktioniert.
- O Ich konnte die Bilder nicht erkennen, sie waren zu klein.
- O Ich habe zuerst nicht gefunden, wo ich meine Antwort kontrollieren lassen kann.
- O Ich habe die Korrektur meiner Antwort nicht verstanden.
- O Ich habe die Aufgabe beim ersten Versuch richtig gelöst.
- O Ich habe noch einmal in die Texte und Bilder geschaut und die Aufgabe erneut gemacht.

Der Evaluationsbogen

3.	Welche Verbesserungsvorschläge fallen Dir	insgesamt zu d	iesem Onli	nekurs	ein?			
С	eine Kurs-Version für das Handy erstellen Layout motivierender gestalten Bilder größer und schärfer darstellen	O einmalige I O beim Ankli O lange Text	Passwortein cken der B	gabe ilder, o	O m	nehr A roß an	bsätze zeigen	in Texten
4.	Was hat bei Dir nicht funktioniert und wo							
	wiederholtes Neuladen der Seite O langs Animationen haben nicht funktioniert	ames Internet	 O Übunş					
5.	Wie oft musstest Du insgesamt das Passwo	rt eingeben?	einmal	О	О	О	О	sehr oft
6.	Was findest Du an dem Onlinekurs gut?							