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Beyond the standard model physics

• LLP occur when either 
mass splitting between two 
particles is small or the 
coupling is suppressed


• Neutrino masses: Evidence 
of BSM physics


• Intimately related to new 
physics at lifetime frontier

Cartoon by Jessie Shelton

• Third dimension: lifetime!


• Not well explored at the LHC


• Long lived particle (LLP) 
searches: very little to no 
background
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Neutrino mass generation mechanisms

• SM + right handed fields • Small Dirac neutrino masses
Tiny Yukawa

• Baryogenesis through 
leptogenesis• RH fields mass term

Lepton number violation

Majorana mass, can be heavy, 
can have YN ~ 1, introduces 
Lepton number violation

Dirac mass, usually small Yν

See e.g. Deppisch, New J. Phys. 17 (2015) 075019
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Neutrino mass model probes

• Let us go to one extreme MN ≈ 1014 GeV (GUT scale)

• Light neutrino mass

• Sterile neutrino mass scale MN unknown


• ≈ 1014 GeV               Naive seesaw, GUTs


• ≿ 109 GeV                Thermal leptogenesis


• ≈ 103 GeV                Production at the LHC  


• ≈ 1 keV                    Dark matter candidate


• ≈ 1 eV                      Oscillations, cosmology, 0νββ

Region of interest for this talk

• Heavy neutrino lifetime
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Neutrino masses - a simple model
• Gauge group: SU(3)C X SU(2)L X U(1)Y X U(1)B-L


• Characteristics


• Particle content: B-L gauge boson (Z’), Higgs boson (𝝌B-L), 3 heavy neutrinos (N)


• Couplings: g’B-L (B-L coupling), sin⍺ (𝝌B-L, Higgs mixing), VlN (neutrino mixing)


• Free parameters: 5 masses, 5 couplings (diagonal VlN)


• Assume only light muon neutrino → 3 masses, 3 couplings


• Charges: 𝝌: +2; N: -1; q: 1/3; l:-1

• Heavy neutrino lifetime

m⌫ ⇡ �M2
D

MR
= �V 2

lNMR
<latexit sha1_base64="BjufmH0e7GjsjJk4s0s+ZC9SBrQ="></latexit>

Mohapatra, Marshak (PRL 44 (1980) 1316︎1319 )
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Higgs sector

Kinetic term

Right handed neutrino term

Additional Yukawa terms

Abelian hyper-charge and B-L mixing terms set to zero

B-L Lagrangian 
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B-L portals
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Suppressed by VlN

Different B-L mass hierarchies lead to different phenomenology
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Z’ portal

X
h 𝝌B-L

X
Z Z’

X
ν N

arXiv:1903.06248

MZ’ must at least be 125 GeV → strong constraints from dilepton searches

X
h 𝝌B-L

Suppressed by sin⍺

X
Z Z’

Suppressed by g’

X
ν N

Suppressed by VlN
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Heavy Higgs portal

X
h 𝝌B-L

X
Z Z’

X
ν N

Constraints from heavy Higgs searches, EW observables and theory considerations 

X
h 𝝌B-L

Suppressed by sin⍺

X
Z Z’

Suppressed by g’

X
ν N

Suppressed by VlN
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Heavy Higgs portal

X
h 𝝌B-L

X
Z Z’

X
ν N

Constraints from heavy Higgs searches, EW observables and theory considerations 

X
h 𝝌B-L

Suppressed by sin⍺

X
Z Z’

Suppressed by g’

X
ν N

Suppressed by VlN

Maximal allowed Higgs mixing

Too close to comfort?
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Heavy Higgs portal

X
h 𝝌B-L

X
Z Z’

X
ν N

Constraints from heavy Higgs searches, EW observables and theory considerations 

X
h 𝝌B-L

Suppressed by sin⍺

X
Z Z’

Suppressed by g’

X
ν N

Suppressed by VlN

Alternative, ‘safe’ benchmark
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Neutrino portal

• Several probes for heavy neutrinos (aka heavy neutral leptons; HNL)

• Intensity frontier typically covers low masses; small mixing angles

• Limit plot corresponds to HNL production via SM mediators, B-L charges not 

taken into account

• At the LHC, same sign leptons from production (decays) of heavy neutrinos via 

SM W boson

• Current LHC limits weak, rapidly changing situation

p

p

w*
l±

l±

q

q
w*

N

• Typical LHC search

• Minimal process

• Prompt lepton requirement

Deppisch et al, New J. Phys. 17 (2015) 075019

X
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• Build FCC!

• Heavy neutrino phenomenology at LHC necessitates exploration at lifetime 

frontier

• For neutrino masses ≈ 100’s of GeV, VμN ≈ 10-6 → LN ≈ 25mm

• Problem: VμN suppression → have higher luminosity

• Neutrino mass of order 10 GeV, VμN ≈ 10-6, LN ≈ 100m, decays outside of the 

LHC → build bigger detectors; several proposals exist

Deppisch et al, New J. Phys. 17 (2015) 075019

• Heavy neutrino decay length

p

p

w*
l±

l±

q

q
w*

NX

Neutrino portal
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LLP searches basics

Nobs ⇡ (�LHC

sig
L) ✏detector

LLP
nLLP ✏geometric Pdecay(b̄c⌧, L1, L2)

<latexit sha1_base64="mEj7T+AsmEIRX+eGFF5LboX4lLg="></latexit>

• Boost depends on production mechanism and mass 
hierarchy between progenitor and decay product

IP

LLP

Detector

Shielding 

usually rock

• Geometric acceptance depends on the distance and geometry of the detector
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Proposed lifetime frontier detectors

Detector Location Distance from IP 
(m) Dimensions (m) Luminosity (fb-1)

FASER-2 ATLAS 480 Cylinder 5 X1 3000

CODEX-b LHC cavity 3 10 X 10 X 10 300

MAPP LHCb/
MoEDAL 50 7 - 10 tunnel


5 - 25 degrees angle 300

MATHUSLA CMS 100 200 X 200 X 20 3000

IP

LLP

Detector

Shielding 

usually rock

Approved experiment
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B-L portals

X
h 𝝌B-L

X
Z Z’

X
ν N

h → N N still possible if sin⍺ is large

X
h 𝝌B-L

Suppressed by sin⍺

X
Z Z’

Suppressed by g’

X
ν N

Suppressed by VlN

Deppisch et al, JHEP 1808 (2018) 181

p 

p 
h 

Nμ

Nμ

sin⍺ = 0.3, g’ ~ 0
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B-L portals

X
h 𝝌B-L

X
Z Z’

X
ν N

X
h 𝝌B-L

X
Z Z’

X
ν N

Suppressed by sin⍺ Suppressed by g’ Suppressed by VlN

sin⍺ = 0, g’ = 10-3

Z’

p 

p 

Nμ

Nμ

MZ’ < Mh →  MZ’ < 100 GeV; 

What do the experiments have to say about this mass 
range?



09 September 2019S. Kulkarni  16

B-L existing constraints

• Current constraints on the Z’ masses come from LHC as well as fixed target 
experiments


• Reinterpretation of LHC SM searches done via CONTUR

sin⍺ = 0

Amrith et al. arXiv:1811.11452

http://arxiv.org/abs/arXiv:1811.11452
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Some simple estimates

• Significant Z’ production cross section 

• BR(Z’→ N N) ~ 8% (per specie)

• Branching ratio N to at least one muon final state between 10 to 30%

• Typical HNL decay lengths (VμN ≈ 10-6): O(100) m

• Potential for good reach in neutrino mixing angle at future facilities

• Concentrate on final state containing muons

g’ = 10-3 
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Why muons?

• Electrons: absorbed in calorimeter (Electrons in muon system can appear 
as noise)


• Taus: decay, penalty due to tau branching fraction, challenging at LHC


• Jets: Not good resolution, larger trigger requirements compared to leptons


• Muons:


• Excellent efficiencies for a large part


• Lower background compared to hadrons


• NB: situation is different for highly displaced muons

arX
iv: 

18
04

.0
45

28
.



09 September 2019S. Kulkarni  19

Decays via Z’

• Model implementation in MadGraph 

• Decays and hadronization using Pythia8

• No detector simulation

• Final states under considerations: 


• LHCb: p p → N N → N μjj


• General purpose LHC: p p → N N → N μμν


• MATHUSLA, FASER, CODEX-b: p p → N N

• Cuts: 


• Lz = 480m, Ld = 1.5m, 5m, R = 1m, 5m [FASER]


• Lz~30 - 60m, Lx~4 - 15m, Ly~-10 - 10m [MAPP*]


• Lx = −100~100m ︎ Ly= 100~120m, Lz = 100~300m [MATHUSLA]
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Decays via Z’
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Increasing 
distance 
from IP/
Increasing 
detector 
volume

Detector angular acceptance

• For LHCb, use μjj final state; CMS μμν

• For other detector any final state 

allowed

• Look at the decay of only one heavy 

neutrino

• Apply some minimal cuts on the pT and |
η| of final state particles


• Assume all neutrino decays within the 
detector volume are detected


• Nice interplay of boost and lifetime

• Detector of maximal interest: 

MATHUSLA

• ATLAS/CMS trigger requirements too 

high

MZ = 3*MN

g’  = 10-3

Deppisch, Kulkarni, Liu arXiv:1905.11889
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B-L portals

X
h 𝝌B-L

X
Z Z’

X
ν N

X
h 𝝌B-L

X
Z Z’

X
ν N

Suppressed by sin⍺ Suppressed by g’ Suppressed by VlN

Deppisch, Kulkarni, Liu arXiv:1908.11741

sin⍺ = 0.3, g’ = 10-3
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Higgs and Z’ portal

• New channels to probe 


• FSR process usually most attractive for Lμ -L𝛕 models, included here for completion


• Both CMS and ATLAS search for 4 muon final state, interpretations usually in 
NMSSM or dark photon scenarios


• Higgs and Z’ mediated heavy neutrino production still a possibility

 gB-L sin⍺
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Differences with dark photon model

sin⍺

 gB-L

• In B-L model the term responsible for generating Z’ mass is also responsible for 
mediating SM - B-L interactions


• Z’ lifetime also controlled by gB-L.

• This is not the case for dark photon models, mass generated by dark Higgs also 

mediated interactions 

• Lifetime of ZD controlled by mixing parameter ϵ
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Z’ Cross section and lifetimes
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Analysis details
• ATLAS-EXOT-2016-22 (13 TeV, 36.1 fb-1): 

- Analysis for Higgs decays to pair of dark 
photons


- Searches for ZD decays to pair of electrons 
or muons


- Presents fiducial cross sections and limits on 
Higgs ZD branching fraction


- ZD mass between 1 to 60 GeV

• CMS-HIG-18-003 (13 TeV, 35.9 fb-1): 

- Searches for pair production of light bosons


- Considers NMSSM models


- Also sensitive to moderate displacements 
Lxy < 10 cm


- Presents fiducial cross sections and model 
specific limits


- ZD mass between 0.25 to 8.5 GeV
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‘Effective’ coupling constraints

• For Higgs mediated Z’ production, constraints on the product of coupling


• Easy way to rescale limits given gB-L or sin⍺ value


• Important: rescaling to be taken with caution, different treatment for displaced 
regime

 gB-L sin⍺cos⍺
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Analysis details

• CMS-EXO-18-008 (13TeV, 77.3 fb-1):


- Final state radiation of Z’ in DY Z 
production 


- Muon final state only 


- Particularly useful for Lμ - L𝜏


- Limits on the Lμ - L𝜏 z’ coupling as a 
function of mass, easy to rescale


- Mass range between 6 to 70 GeV


• CMS-EXO-19-018 (13TeV, 137 fb-1):


- Latest and greatest CMS muon scouting 
analysis


- Search for narrow resonance decaying to 
pair of muons


- Scouting and full reach analysis


- Mass range 10 to 200 GeV
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results

Limits do not follow 
lifetime contours
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results

ATLAS limits stronger 
than CMS because of 

larger acceptance
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results

QCD resonance 
region vetoed by 

ATLAS
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results

‘Flattening’ of limits due to 
displaced regime
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results

Latest (greatest) CMS 
muon scouting
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Deppisch, Kulkarni, Liu arXiv:1908.11741

 28

Results

Independent of 
Higgs mixing
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HNL production
p 

p 

h 

Nμ

Nμ

Z’

p 

p 

Nμ

Nμ

Vertex Feynman rule

Z’ - l - l gB-L

h - Z’ - Z’ gB-L cos⍺ mZ’

h - N - N gB-L cos⍺ mN/mZ’

Z’ - N - N gB-L

• All vertices 𝝰 gB-L 


• Improved constraints on gB-L → 
decreased heavy neutrino production 
rate via h and Z’ mediators


• h and Z’ mediators remain interesting 
option in limiting cases
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The global picture
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The global picture

No LHCb displaced limits
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The global picture

New limits
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The global picture

sin⍺ dependent
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The global picture
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Conclusions

• B-L models one of the simplest extensions of SM physics providing 
explanations of neutrino masses


• Heavy neutrino production can take place via SM Higgs or B-L Z’ decays and 
probe different regions of B-L parameter space


• Have potential to probe neutrino mixing angles responsible for neutrino mass 
generations


• Z’ production via SM Higgs tightly constrained via ‘lepton-jet’ searches. If Z’ 
production via Higgs is possible, heavy neutrino production is suppressed


- ATLAS analyses consider both electron and muon lepton-jets


- Prompt analyses constrain parameter space where Z’ is displaced


- Interpretation for displaced regime not always straightforward 


- Model independent fiducial cross section limits from collaborations are very 
welcome for reinterpretation exercises 


- Careful reconsideration of information for exotic searches specially trigger 
and object level efficiencies necessary

Thank you!



Conclusions
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Going for extremely light masses

• Possibility of extending Higgs portal analyses for electron final states? 


• Mono-jet constraints?

Want to 

probe this
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Additional ATLAS analyses

• ATLAS-EXOT-2017-28 (13 TeV, 36 fb-1) 

- Displaced lepton - jets analysis


- Electron and muon LJ 


• Prompt analysis as sensitive as CMS analysis


• Displaced analysis 8 TeV not sensitive; 13 TeV 
potentially sensitive


• 13 TeV analysis hard to reinterpret

• ATLAS-EXOT-2014-09 (8 TeV, 20.3 fb-1) 

- Prompt lepton - jets analysis


- Limits as a function of FRVZ ZD mass


- Both electron and muon final states


- Mass range from 0.25 to 1.5 GeV


- Competitive (but not better) limits than 
CMS at low mass
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LHCb DV search

• LHCb-PAPER-2016-047: (7+8 TeV,   
3 fb-1)


• ‘Inclusive displaced vertex search’


• Trigger muons pT > 10 GeV


• Final state muon and two jets


• pT(μ) > 12 GeV, dIP > 0.25 mm, Rxy 
> 0.55 mm


• Invariant mass of tracks > 4.5 GeV


• Interpretation in terms of GUT 
scale SUSY RPV models
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CMS DV search

• CMS-EXO-12-037: (8 TeV,   20 fb-1)


• Inclusive displaced vertex search for 
pair of electron or muon final states


• Electron ET > 36 (22) GeV; Muon pT > 
23 GeV (reconstructed in muon 
detectors)


• Generated Lvtx < 50 cm 


• pT(μ) > 12 GeV, dIP > 0.25 mm, Rxy > 
0.55 mm


• Interpretation for three body decays
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ATLAS DV search

• ATLAS-EXOT-2017-03 (13 TeV, 32.9 fb-1) 

• Inclusive search in displaced muon vertex

+

≠
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ATLAS LJ search

• ATLAS-EXOT-2013-22 (sqrt 13 TeV, 20 fb-1)

• No equivalent CMS electron LJ search yet
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W mass constraint

• Constraints can be derived when lighter 
or heavier Higgs is 125 GeV


• Much stronger constraints when lighter 
Higgs is 125 GeV and heavier Higgs is 
heavy


• Driven by discrepancy between 
observed and predicted value of W 
mass


• When lighter Higgs is at 125 GeV, 
higher order EW corrections increase 
the discrepancy 


• When heavy Higgs is at 125 GeV, 
somewhat better situation however, it is 
strongly constrained by Higgs signal 
strengths

Lopez-Val, Robens arXiv:1406.1043
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HNL high mass region
ATLAS CMS

Electron Muon

Electron Muon

ATLAS

CMSExactly two DVs


Gen level selection + approximate event 
level efficiencies

At least one DV in inner tracker


Efficiencies derived by ‘fitting’ to the limits

arXiv:1908.09838


