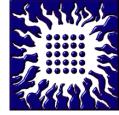
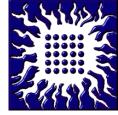

H→ZZ*@3TeV CLIC revisited

AWG, 14 October 2019

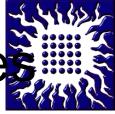
Natasa Vukasinovic Ivanka Bozovic Jelisavcic & Goran Kacarevic


Overview

- Motivation
- $H \rightarrow ZZ^* \rightarrow q \bar{q} e^+ e^- (\mu^+ \mu^-)$
 - Simulation details
 - Signal and background processes
 - Lepton isolation
 - MVA results
 - Efficiencies
- Comparison with previous results
- Discussion
- Summary
- Discussion and plans towards CPV (by Ivanka)

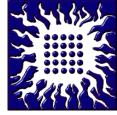

Motivation

- Why to come back to $H \rightarrow ZZ^*$ decays?
 - We intend to publish results from 1.4 TeV and 3 TeV CLIC done by our group $(H \rightarrow ZZ^* \rightarrow q\bar{q}ll \ (l=e,\mu,\tau))$.
 - However, the person in charge for these analysis has left to industry and in order to publish the paper we had to *reproduce* the results.
 - In addition, we wanted to consider cleaner qq
 q
 e⁺e⁻(μ⁺μ⁻) channel, as a starting point for the CPV measurement in the scalar-pseudoscalar (Higgs) mixing (see the discussion by Ivanka)
- Motivation for CPV is clear:
 - Almost all BSM theories with extended Higgs sector predict possible anomalous contribution and/or CP violation in the Higgs sector.
 Example: scalar h₀ and pseudoscalar A₀ in 2HDM.
 - If Higgs potential is not CP symmetric, the lightest mass eigenstate is their (CP even and CP odd) superposition.
 - We should look into it (my PhD topic) proposed by Philipp (Roloff)

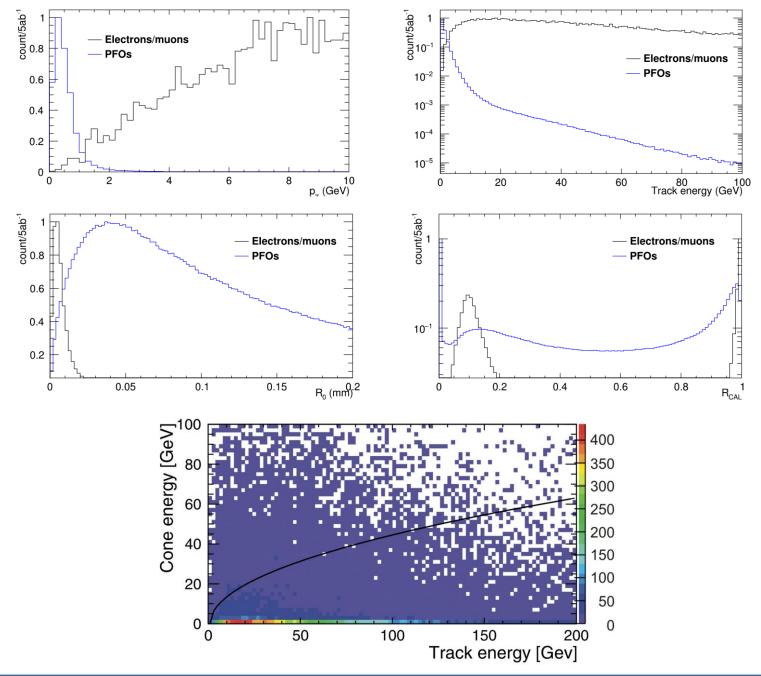


Simulation details

- Assuming m_H = 126 GeV, 5ab⁻¹
- Signal and background simulation: WHIZARD v1.95 (v57), including ISR and BS and realistic luminosity spectrum.
- Particle interaction with the CLIC_ILD detector is fully simulated.
- Hadronic background from BS is overlaid in the digitization phase.
- ILCSoft Version 2017-12-21.

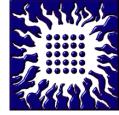

Signal and background processe

	Process	σ (fb)	Expected events at 5 ab ⁻¹	Events Simulated
	$e^{+}e^{-} \rightarrow H\nu_{e}\bar{\nu}_{e}, H \rightarrow ZZ^{*}, ZZ^{*} \rightarrow q\bar{q}l^{+}l^{-}, $ $(l = e, \mu)$	1.13	5650	22 618
	$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow W W, W W \rightarrow q \bar{q} q \bar{q}$	43	215 000	219 005
	$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow b \bar{b}$	233	1 165 000	1 065 894
	$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow c \bar{c}$	11.7	58 500	51 798
	$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow gg$	35.2	176 000	128 055
<	$e^+e^- \rightarrow H\nu_e \bar{\nu}_e, H \rightarrow others$	91	455 000	464 994
\langle	$e^+e^- ightarrow q\bar{q}l^+l^-$	3319.6	16 598 000	423 850
<	$e^+e^- o q\bar{q}l\nu$	5560.9	27 804 500	2 054 725
	$e^+e^- \to q\bar{q}\bar{\nu}_e\nu_e$	1317.5	6 587 500	569 250
C	$\gamma\gamma ightarrow q \bar{q} l^+ l^-$	20293.4	135 724 500	1 032 075
	$\gamma\gamma o q \bar{q}$	112038.6	517 430 000	1 044 945
	$e^{\pm}\gamma ightarrow q \overline{q} e$	20661	60 284 000	462 023
	$e^{\pm}\gamma ightarrow q \overline{q} \nu$	36832.4	138 261 500	691 812

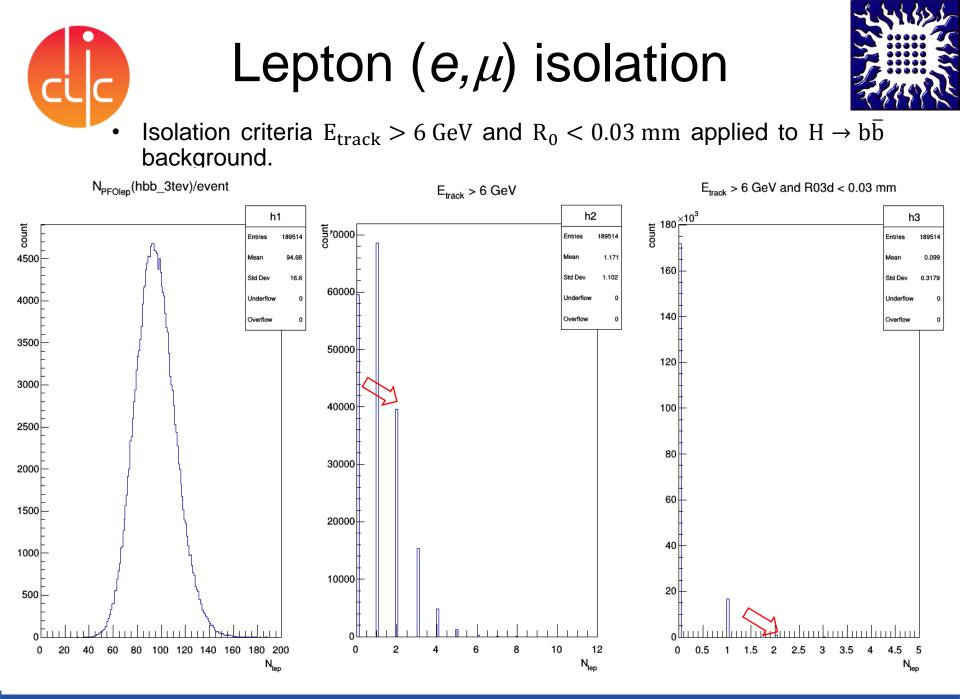


Lepton (e, μ) isolation

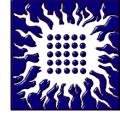
- Criteria for lepton isolation:
 - $E_{track} > 6 \ GeV$
 - $p_T > 2 \text{ GeV}$ for all PFOs inside isolation cone
 - $d_0 < 0.02 mm, z_0 < 0.02 mm$ and $R_0 < 0.03 mm$
 - $R_{CAL} = 0.02 0.35$ and $R_{CAL} > 0.94$
 - $E_{cone}^2 < 0 * E_{track}^2 + 20 \; GeV * E_{track} 20 \; GeV^2$


- Aim of the preselection is to reduce backgrounds with large x-section
- Preselection condition: Find 2 isolated leptons

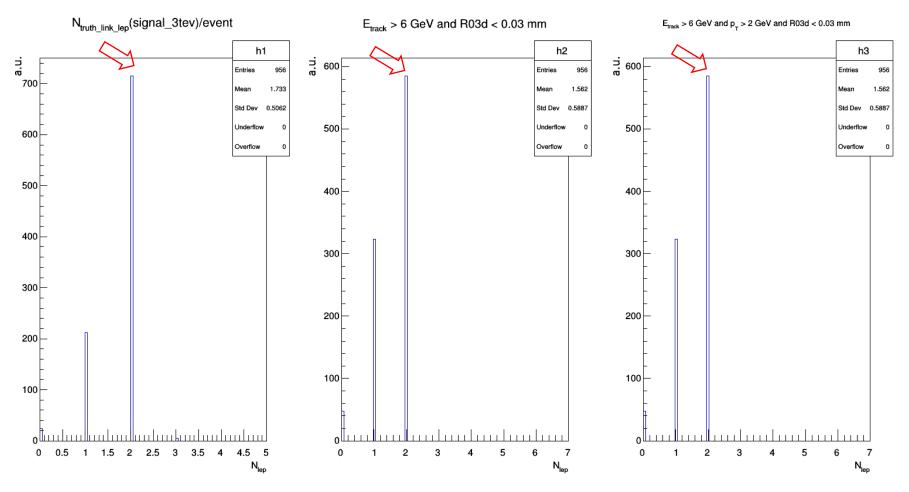
Process@5 ab ⁻¹	$\boldsymbol{\varepsilon}_{preselection}$
Signal	
$\begin{split} e^+e^- &\rightarrow H\nu_e\bar{\nu}_e, H \rightarrow ZZ^*, ZZ^* \rightarrow q\bar{q}l^+l^-, \\ l &= e, \mu \end{split}$	52 %
Background	
$e^+e^- \rightarrow H\nu_e \bar{\nu}_e, H \rightarrow WW, WW \rightarrow q\bar{q}q\bar{q}$	3.8 ‰
$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow b \bar{b}$	1.6 ‰
$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow c \bar{c}, gg$	3.1 ‰
$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow others$	2.3 %
$e^+e^- ightarrow q \bar{q} l^+ l^-$	7.4 ‰
$e^+e^- ightarrow q \bar{q} l \nu$	4.8 ‰
$e^+e^- \rightarrow q\bar{q}\bar{\nu}_e\nu_e$	1.7 ‰
$\gamma\gamma ightarrow q \bar{q} l^+ l^-$	1.3 %
$\gamma\gamma o q \overline{q}$	2.5 ‰
$e^{\pm}\gamma \rightarrow q\bar{q}e$	7 ‰
$e^{\pm}\gamma ightarrow q \overline{q} \nu$	1.6 ‰



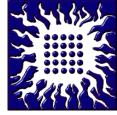
Lepton (e,µ) Isolation



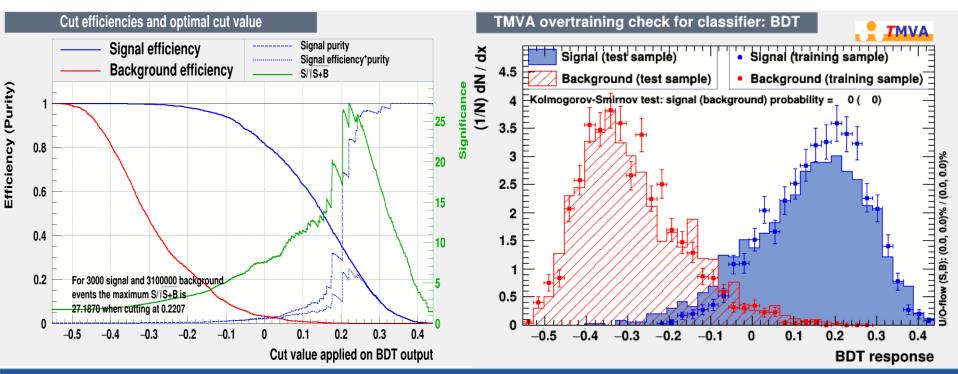
- Signal efficiency is primarily reduced due to the requirement for 2 isolated leptons per event.
- Isolation criteria enable background selection efficiencies at the % level.
- Despite that, S/B after preselection is ~ 10^{-3} (Initial S/B is ~ $6 \cdot 10^{-6}$)
- As illustrated in the H→bb case, permile background selection is due to the background suppression either with the track energy or impact parameter cut.
- When τ channel is included residual background (after preselection) is at level of 10s of %. This is due to the fact that TauFinder might consider part of the jet final states as a τ candidate.



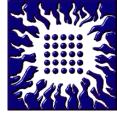
Lepton (e, μ) isolation

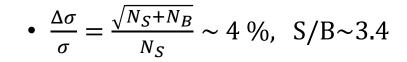


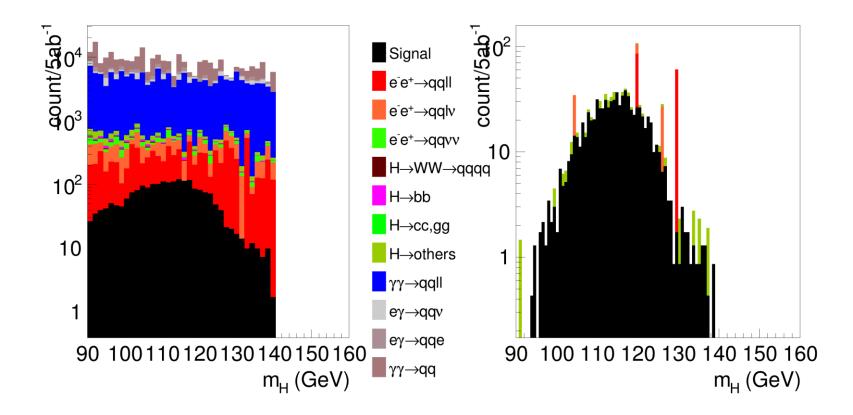
- Preselection impact on signal efficiency:
 - It is evident that about 40% of the signal is lost on 2-lepon requirement and about 8% on other isolation criteria.


MVA results

• TMVA is trained with 16 observables: $m_Z, m_{Z^*}, m_{l^+l^-}, m_{q\overline{q}}, m_H$,

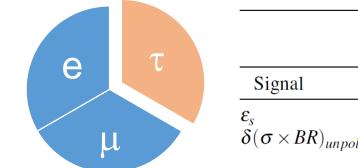

 $E_{vis}, E_{vis} - E_{H}, -logy_{23}, -logy_{12}, P(b)^{jet_1}, P(b)^{jet_2}, P(c)^{jet_1}, P(c)^{jet_2}, p_T^{miss}, \theta_H, N_{PFO}.$


- Training is performed on all background.
- The method (BDT) is stable w.r.t. the number of observables and a choice of the training/application samples.



MVA results

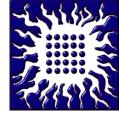
Efficiencies



Process@5 ab ⁻¹	$m{arepsilon}_{pres}$	\mathcal{E}_{BDT}	N _{BDT} @5ab⁻¹
SignaL			
$\begin{array}{c} e^+e^- \rightarrow H\nu_e\bar{\nu}_e, H \rightarrow ZZ^*, ZZ^* \rightarrow q\bar{q}l^+l^-, \\ l=e,\mu \end{array}$	52 %	32.5 %	807
Background			
$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow W W, W W \rightarrow q \bar{q} q \bar{q}$	3.8 ‰	0	0
$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow b \bar{b}$	1.6 ‰	0	0
$e^+e^- \rightarrow H \nu_e \bar{\nu}_e, H \rightarrow c \bar{c}, gg$	3.1 ‰	0	0
$e^+e^- \rightarrow H\nu_e \bar{\nu}_e, H \rightarrow others$	2.3 %	7.2 ‰	61
$e^+e^- ightarrow q \bar{q} l^+ l^-$	7.4 ‰	5 ‰	117
$e^+e^- ightarrow q \bar{q} l \nu$	4.8 ‰	3.6 ‰	61
$e^+e^- \rightarrow q \bar{q} \bar{\nu}_e \nu_e$	1.7 ‰	0	0
$\gamma\gamma ightarrow q \bar{q} l^+ l^-$	1.3 %	0	0
$\gamma\gamma ightarrow q \overline{q}$	2.5 ‰	0	0
$e^{\pm}\gamma \rightarrow q \bar{q} e$	7 ‰	0	0
$e^{\pm}\gamma ightarrow q \overline{q} \nu$	1.6 ‰	0	0

Discussion

Comparison with previous $q \bar{q} ll (l=e, \mu, \tau)$ analysis



	1.4TeV CLIC	1.4TeV CLIC	3TeV CLIC
	$1.5ab^{-1}/2ab^{-1}$	$1.5ab^{-1}/2ab^{-1}$	$2ab^{-1}/5ab^{-1}$
Signal	$ZZ^* ightarrow q\bar{q}q\bar{q}$	$ZZ^* \to q\bar{q}l^+l^-$	$ZZ^* \to q\bar{q}l^+l^-$
$\overline{\epsilon_s}$	18.4%	28.4%	30%
$\tilde{\delta}(\sigma \times BR)_{unpol.}$	17.5%/15.2%	5.6%/4.8%	4.4%/2.8%
-			

- Previous result was obtained with 2ab⁻¹
- Exclusion of taus introduces into statistical uncertainty the effect of: $1/\sqrt{(2/3)}$
- Enhanced integrated luminosity to 5 ab^{-1} reduces statistical error for: $1/\sqrt{(5/2)}$
- Combined , it's a factor of 0.77 w.r.t. 2 ab-1 result with taus
- What leads to ~3.4% expectation in electron(muon) final state with 5 ab⁻¹
- The result of 4% we obtained *can be considered as consistent*, though the overall efficiency for signal is lower in the e, μ case (what is compensated by the more efficient background rejection: S/B ratio is >3, while with taus included S/B is ~ 1)

Summary

- Revised $H \rightarrow ZZ^*$ @ 3 TeV analysis is being presented for the semileptonic (I=e, μ) final state.
- Motivated by:
 - Paper publication on $H \rightarrow ZZ^*$ at all energies
 - Continuation towards CPV measurement
- Statistical uncertainty is found to be 4 %, what is consistent with previous results performed for the full semileptonic state and 2 ab^{-1} of (pseudo)data. There is a slight gain in the statistical significance (22.7 \rightarrow 25) w.r.t. the final state with taus.
- Estimated number of signal events after MVA separation is 807.
- More importantly, signal to background ratio after MVA is 3.4, while in analysis with τ s included it is 1.1. Cleaner signal in this case makes e, μ sample more sensitive to study Higgs CPV mixing.
- The question (to be further discussed by Ivanka) is: Is the estimated number of 807 selected events sufficient to measure Higgs CPV mixing (+ issue of charge determination for quarks).