Generative Adversarial Networks for Particle Physics Applications

MENTORS -
SERGEI GLEYZER
MANOS STERGIADIS
LORENZO MONETA
OMAR ZAPATA
GERARDO GUTIERREZ

PRESENTED BY -
ASHISH KSHIRSAGAR
Overview of GANs

- **MiniMax game**: Adversarial training between *Generator* and *Discriminator*.
- **Generator**: Generate fake images that fool the discriminator.
- **Discriminator**: Distinguish between real and fake images.
Need for Deconvolution
Upsample Layer

- Layer without weights/ filters.
- Like ‘Pooling’ in Convolution.
- Generates an increased dimension matrix.
- Implemented Nearest Neighbor interpolation supporting batch input.
- Used along with Convolution Layer in generative models.
- Unit Tests passing.
Transpose Convolution Layer

- Performs operations similar to a normal convolution layer in backward direction.
- Implemented forward and backward passes for CPU Architecture.
- Steps
 - Input matrix to input columnar vector.
 - Transpose Convolution Matrix from the given kernel / filters.
 - Compute the output columnar vector.
- Unit Tests passing.
TMVA GANs module

- Designed MethodGAN class with GANs framework.
- Parsing Layouts for
 - ConvLayer & TransConvLayer
 - Upsample & Pooling Layer
 - Input, Batch & Network
Future Work

- Design separate loss functions for Generator and Discriminator.
- Adding support for other variations of GANs for high energy physics applications.
- Benchmarking the results with other standard implementations.
Links

- Final Blog -

- Pull Requests
 - Addition of layer support for GANs -
 https://github.com/root-project/root/pull/4164
 - GANs implementation -
 https://github.com/Ask149/root/tree/dev/ashish/temp

- Other PR’s - https://github.com/root-project/root/pull/4275
Thank you!