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I This talk concerns the calculation of scattering amplitudes, and a new way to draw Feynman diagrams.
I We look at helicity diagrams in particular, and present an alternative graphical method to compute them.
• The helicity diagrams are represented in terms of flow lines that connect between spinor indices.
• They are expressed directly in terms of spinor inner products, without intermediate algebraic manipulations.

I This work is still in its early stages, and for now we look at tree-level diagrams with massless particles.

I Let us back up a little.

I Consider a very simple example (all momenta outgoing, Feynman gauge):

A(q, q̄,Q, Q̄) =

q

q̄ Q

Q̄
1

2 3

4

= ig2
s ta12ta34

(
ū(1)γµv(2)

)
gµν
(

ū(3)γνv(4)
)

(p1 + p2)2

I Textbook methods tell us to evaluate |A|2 by performing spin/polarization sums, using completeness
relations for Dirac spinors and polarization vectors, using the Dirac equations, taking traces in Dirac
space, using the Clifford algebra, etc.

I For more involved processes the algebraic manipuations become more involved, and one may resort to
a more systmetic approach, e.g. by separating the kinematic quantities from the Dirac γ matrices and
organizing the γ matrices in a canonical order, making extensive use of the Clifford algebra.

I For large strings of γ matrices, this is very cumbersome.

I And of course, nowadays things are done a bit different anyway.
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I Dirac spinors of outgoing fermions and anti-fermions, ū(p) =
(

ūL(p) , ūR(p)
)

and v(p) =
(

vL(p)
vR(p)

)
.

I They transform under the (1/2,0)⊕ (0,1/2) representation of the Lorentz group.

I Dirac matrix in the Weyl basis, γµ =
√

2
(

0 τµ

τ̄µ 0

)
,
√

2τµ,ȦB = σµ,ȦB and
√

2τ̄µ
AḂ

= σ̄µ
AḂ

.

I In the massless limit, the Dirac equations decouple to the Weyl equations for massless Weyl spinors.

I In the (massless) spinor-helicity formalism:

• Massless outgoing fermions and anti-fermions ū+/− and v+/− with positive/negative helicity:

left-chiral ū+(p) =
(

[p| , 0
)

=
(
λ̃p,Ȧ , 0

)
v+(p) =

(
|p]
0

)
=
(
λ̃Ȧ

p
0

)
right-chiral ū−(p) =

(
0 , 〈p|

)
=
(

0 , λA
p

)
v−(p) =

(
0
|p〉

)
=
(

0
λp,A

)
• Massless outgoing vector bosons (with q a light-like reference vector):

ε
µ
−(p,q) =

〈p|τ̄µ|q]
[pq]

=
λA

p τ̄
µ

AḂ
λ̃Ḃ

q

[pq]
or ε

µ
−(p,q) =

[q|τµ|p〉
[pq]

=
λ̃q,Ḃτ

µ,ḂAλp,A

[pq]

ε
µ
+(p,q) =

〈q|τ̄µ|p]
〈qp〉

=
λB

q τ̄
µ

BȦ
λ̃Ȧ

p

〈qp〉
or ε

µ
+(p,q) =

[p|τµ|q〉
〈qp〉

=
λ̃p,Ȧτ

µ,ȦBλq,B

〈qp〉

• Contractions between Weyl spinors: [ij] = λ̃i,Ċλ̃
Ċ
j = εĊḊλ̃

Ḋ
i λ̃

Ċ
i and 〈ij〉= λC

i λj,C = εCDλi,Dλi,C

[here ε denotes the anti-symmetric Levi-Civita symbol]
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I The calculation is simplified by the above; considering explicit helicities.

I Consider our simple example again, for a specific helicity configuration:

A+−−+(q, q̄,Q, Q̄) =

q

q̄ Q

Q̄
1+

2− 3−

4+

= ig2
s ta12ta34

[14]〈32〉
(p1 + p2)2

I |A|2 =
∑

h |Ah|2 .

I Expressed in terms of the spinor inner products [ij] and 〈ij〉.

I Still requires the use of algebraic relations: [i|τµ|j〉gµν〈k|τ̄ν |l] = [il]〈kj〉, [i|τµ|j〉= 〈j|τ̄µ|i], etc.

I Explicit representations of the Pauli matrices may be chosen and the diagrams coded numerically,
instead of reducing them algebraically to spinor inner products first.

I Either way, still left with intermediate algebraic manipulations and/or explicit matrix multiplications.

I For more involved processes it is not immediately obvious, which spinor inner products will result.
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I Can we improve on this?

I Yes, using the Weyl-van-der-Waerden (WvdW) formalism, using that objects in higher-dimensional
representations of the Lorentz group may be reduced to the irreducible (1/2,0) and (0,1/2) reps.

I Let’s back up again.
• The (restricted) Lorentz group is generated by spatial rotations~J and Lorentz boosts ~K.
• Two copies of SU(2) generators: ~N± = 1

2 (~J± i~K), with [N±
i ,N

±
j ] = iεijkN±

k and [N±
i ,N

∓
j ] = 0.

• so(3,1)' su(2)left⊕ su(2)right.
• Representations: (0,0), scalars,

Representations: (1/2,0) and (0,1/2), left- and right-chiral Weyl spinors,
Representations: (1/2,0)⊕ (0,1/2), Dirac spinors,
Representations: (1/2,1/2), vectors.

I Can we use similar flow diagram methods as we use for SU(N) amplitudes?

• SU(N) Fierz identity: ta
ijt

a
kl ∼ δilδkj −

1
N

δijδkl

i

j k

l

∼

i

j k

l

−
1
N

i

j k

l

• SU(N): One set of SU(N) generators ta −→ δ’s (e.g. color flow)

• so(3,1)' su(2)left⊕ su(2)right: τ
µ, τ̄µ, and external spinors−→ [ij], 〈kl〉

I Short answer: Yes. But there are some steps involved.
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I For Minkowski four-vectors the conversion to the (1/2,1/2) representation is done by the τ matrices:

pµγµ =
(

0 pµσµ

pµσ̄µ 0

)
=
(

0 p/
p̄/ 0

)
←→

√
2

(
0 pµτµ,ȦB

pµτ̄
µ

AḂ
0

)
=
√

2

(
0 pȦB

pAḂ 0

)
For p2 = 0 , p/= |p]〈p| ←→

√
2pȦB = λ̃Ȧ

pλ
B
p

For p2 = 0 , p̄/= |p〉[p| ←→
√

2p̄AḂ = λp,Aλ̃p,Ḃ

For p =
∑

i
cipi , p2

i = 0 , p/=
∑

i
ci|pi]〈pi| ←→

√
2pȦB =

∑
i
ciλ̃

Ȧ
pi
λB

pi

For p =
∑

i
cipi , p2

i = 0 , p̄/=
∑

i
ci|pi〉[pi| ←→

√
2p̄AḂ =

∑
i
ciλpi,Aλ̃pi,Ḃ

I Also for the polarization vectors of massless outgoing vector bosons we have bispinor representations:

εµ−τµ =
|q]〈p|
[pq]

↔ εḂA
− =

λ̃Ḃ
qλ

A
p

[pq]
or εµ−τ̄µ =

|p〉[q|
[pq]

↔ ε̄−,AḂ =
λp,Aλ̃q,Ḃ

[pq]

εµ+τµ =
|p]〈q|
〈qp〉

↔ εȦB
+ =

λ̃Ȧ
pλ

B
q

〈qp〉
or εµ+τ̄µ =

|q〉[p|
〈qp〉

↔ ε̄+,BȦ =
λq,Bλ̃p,Ȧ

〈qp〉
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Switching notation a bit: pi ↔ i and q↔ r

I What do we have so far?

I Spinors fermion anti-fermion

left-chiral λ̃i,Ȧ↔ [i|= i λ̃Ȧ
j ↔ |j] = j

right-chiral λA
i ↔ 〈i|= i λj,A↔ |j〉= j

I Vector bosons (polarization bispinors)

εḂA
− =

λ̃Ḃ
r λ

A
i

λ̃i,Ċλ̃
Ċ
r

↔
|r]〈i|
[ir]

=
1

[ir] i
r

ε̄−,BȦ =
λi,Bλ̃r,Ȧ

λ̃i,Ċλ̃
Ċ
r

↔
|i〉[r|
[ir]

=
1

[ir] i
r

εḂA
+ =

λ̃Ḃ
i λ

A
r

λC
r λi,C

↔
|i]〈r|
〈ri〉

=
1
〈ri〉

i
r ε̄+,BȦ =

λr,Bλ̃i,Ȧ

λC
r λi,C

↔
|r〉[i|
〈ri〉

=
1
〈ri〉

i
r

I Spinor inner products

[ij] = i j [ji] = i j

〈ij〉 = i j 〈ji〉 = i j

I Four-momenta (momentum bispinors; introducing a momentum-dot notation)

p/↔
√

2pȦB =
p

and p̄/↔
√

2p̄AḂ =
p
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We are only interested in the Lorentz structure;

use only a photon line.
I How does this look in our example?

I Look at all helicity configurations:

structure we have

(
ū(p1)γµv(p2)

)
gµν

(
ū(p3)γνv(p4)

)
= (4.2)

(λ̃1,α̇τ
µ,α̇βλ2,β)(λ̃3,γ̇τ

γ̇η
µ λ4,η) + (λ̃1,α̇τ

µ,α̇βλ2,β)(λγ3 τ̄µ,γη̇λ̃
η̇
4) + (λα1 τ̄

µ

αβ̇
λ̃β̇2 )(λ̃3,γ̇τ

γ̇η
µ λ4,η) + (λα1 τ̄

µ

αβ̇
λ̃β̇2 )(λγ3 τ̄µ,γη̇λ̃

η̇
4) ,

=

1

4 3

2
+ −

+−
+

1

4 3

2
+ −

−+

+

1

4 3

2− +

+−
+

1

4 3

2− +

−+

.

Considering the second or third term in eq. (4.2), having the structure τµτ̄µ, we note that they can be

contracted using the Fierz identity. Graphically, for example for the third term, we have in the chirality-�ow

picture

τ̄µ
αβ̇
τ γ̇ηµ =

α β̇

γ̇η

=

η

α β̇

γ̇

= δ η
α δ

γ̇

β̇
(4.3)

� a graphical embodiment of the Fierz identity � where we have not yet applied the external spinors, and

which can be compared to the corresponding identity for SU(3) color, eq. (2.6). The left diagram in eq. (4.3)

is a hybrid representation between a conventional Feynman diagram and a diagram in the chirality-�ow

picture, in which we let the photon line denote the group theory structure only, in analogy with the gluon

line in eq. (2.2).15 We see that the Lorentz structure of the photon propagator in the chirality-�ow picture

may be represented by a double-line, i.e. two parallel lines, one being dotted and one being undotted.

Note that eq. (4.3), when applied to external spinors, results directly in the spinor inner products

τ̄µ
αβ̇
τ γ̇ηµ λα1 λ̃

β̇
2 λ̃3,γ̇λ4,η = 〈1 4〉[3 2] , (4.4)

or pictorially,
p1

p3p4

p2

=

p1

p3p4

p2

, (4.5)

where we refrain from writing out the spinor products in terms of bras and kets, since the graphical

representation has exactly the same meaning.16

15 The absence of the 1/N -suppressed term in eq. (4.3), compared to eqs. (2.1), or (2.2), can be understood by noting that

this term is canceled against the contribution from τ̄0
αβ̇
τ γ̇η0 . An alternative way of viewing this is that we are summing over

the generators of U(2) in eq. (4.3), meaning that we should not expect an additional term.
16 We remark that the graphical appearance of eq. (4.5) is very similar to the one of eq. (4.3), the di�erence being only

in the labels of the external lines. We will usually supply the external lines of a chirality-�ow diagram with particle labels,

i.e. labels of spinor momenta, but the external lines may in principle also be kept �free�, i.e. with spinor indices to act as

placeholders, to be supplied with particle labels at some later stage.

� 11 �

I The third term with (external) flow lines (remember, +↔ dotted, −↔ undotted, flow arrows initially
against fermion arrows):

p1

p3p4

p2

=
p1

p3p4

p2

I This corresponds to: τ̄µ
AḂ
τ ĊD
µ λA

1 λ̃
Ḃ
2 λ̃3,Ċλ4,D = 〈14〉[32]

I Without external spinors:

τ̄µ
AḂ
τ ĊD
µ =

α β̇

γ̇η

=

η

α β̇

γ̇

= δ D
A δ

Ċ
Ḃ
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I How about, say, the fourth term?

p1

p3p4

p2

with τ̄µ
AḂ
τ̄µ,CḊ =

α β̇

γη̇

= εACεḂḊ

I Non-matching flow arrows: Inserting gµν = Tr(τµτ̄ν), converting four-vectors to bispinors, one not
always has contractions τ̄µτµ = δδ, but also τµτµ = εε and τ̄µτ̄µ = εε.

I However, flow arrows at a fermion-photon vertex may be flipped, i.e. adjusted such that the diagram
has matching flow arrows:

µ
pj

pi
=

pj

pi
µ

I Using λA
i τ̄
µ

AḂ
λ̃Ḃ

j = λ̃j,Ḋτ
µ,ḊCλi,C , i.e. 〈i|τ̄µ|j] = [j|τµ|i〉.

I Trade a τ̄ for a τ , if squeezed between external spinors, and if the corresponding index lowering or
raising operations are performed.

I We get, as expected,

p1

p3p4

p2

=
p1

p3p4

p2

=
p1

p3p4

p2

= 〈13〉[42]
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I In general we can show that λiτ̄µ1τµ2 τ̄µ3 . . . τµ2n τ̄µ2n+1 λ̃j = λ̃jτ
µ2n+1 τ̄µ2nτµ2n−1 . . . τ̄µ2τµ1λi

or 〈i|τ̄µ1τµ2 τ̄µ3 . . . τµ2n τ̄µ2n+1 |j] = [j|τµ2n+1 τ̄µ2nτµ2n−1 . . . τ̄µ2τµ1 |i〉
I Or diagrammatically

τ̄µ1 τµ2 τ̄µ3 τµ2n τ̄µ2n+1
. . .
. . .

i j

1 2 n + 1

i+ 1 i+ 1 + ...+ n =
τµ2n+1 τ̄µ2n τµ2n−1 τ̄µ2 τµ1

. . .
. . .j i

n + 1 n 1

i+ 1 + ...+ n i+ 1

I In each multi-photon fermion line we may flip the chirality-flow arrows.
I We may connect one or more such objects to form QED tree-level diagrams.
I To match arrows:
• For internal photons, we use that the flow arrows at fermion-photon vertices can be flipped.
• For external photons, we use the flip of flow arrows between each polarization vector’s two bispinor representations.

I For QCD diagrams non-abelian vertices appear.
I The four-gluon vertex only has gµν factors, the tripple-gluon vertex has terms with gµνpκ, where pκ is

a linear combination of external momenta (at the tree level).
I Essentially what we can show is that in each Feynman rule we may always represent:

• Each metric gµν by a double-line or

• Each four-momentum pµ by

p
or

p
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(Outgoing) Species Dirac Weyl Bra-Ket Feynman Chirality-Flow

RH fermion ū(pi)PR =
(

0 ,
(
uL(pi)

)†)
λαi 〈i| i

−
i

RH anti-fermion PRv(pj) =

(
0

vR(pj)

)
λj,α |j〉 −

j j

LH fermion ū(pi)PL =
((
uR(pi)

)†
, 0
)

λ̃i,α̇ [i| i
+

i

LH anti-fermion PLv(pj) =

(
vL(pj)

0

)
λ̃α̇j |j]

j
+

j

photon εµ−(pi, r)
λαi τ̄

µ

αβ̇
λ̃β̇r

[ir] or
λ̃r,β̇τ

µ,β̇αλi,α

[ir]
〈i|τ̄µ|r]

[ir] or [r|τµ|i〉
[ir]

i
− 1

[ir] i
r
or 1

[ir] i
r

photon εµ+(pi, r)
λβr τ̄

µ
βα̇λ̃

α̇
i

〈ri〉 or
λ̃i,α̇τ

µ,α̇βλr,β
〈ri〉

〈r|τ̄µ|i]
〈ri〉 or [i|τµ|r〉

〈ri〉
i
+

1
〈ri〉

i
r or 1

〈ri〉
i
r

Vertices Dirac Weyl Bra-Ket Feynman Chirality-Flow

fermion-photon ieQfγ
µ ieQf

√
2τµ,α̇β ieQf

√
2τµ,α̇β

− β

+ α̇
µ

ieQf
√

2 β

α̇

fermion-photon ieQfγ
µ ieQf

√
2τ̄µ
αβ̇

ieQf
√

2τ̄µ
αβ̇

+ β̇

− α
µ

ieQf
√

2
α

β̇

Propagators Dirac Weyl Bra-Ket Feynman Chirality-Flow

fermion i
/p

=
i/p

p2 i
λ̃α̇pλ

β
p

p2 i |p]〈p|
p2

p←−+ − i
p2

p
α̇ β

fermion i
/p

=
i/p

p2 i
λp,αλ̃p,β̇

p2 i |p〉[p|
p2

p←−− + i
p2

α β̇
p

photon −igµν
p2

p−→µ ν − i
p2 or − i

p2

Table 1: The QED �Rosetta Stone" translating the chirality-�ow notation to other widely-used spinor-helicity notations. For

more information see section 3.1 (external fermions), 3.3 (external vector bosons), 5.1 (vertices) and 5.2 (propagators).
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Vertices Dirac Weyl Bra-Ket Feynman Chirality-Flow

quark-gluon i gs√
2
tai̄γ

µ igst
a
i̄τ

µ,α̇β igst
a
i̄τ

µ,α̇β

− ̄, β

+ i, α̇

a, µ igst
a
i̄

β

α̇

quark-gluon i gs√
2
tai̄γ

µ igst
a
i̄τ̄

µ

αβ̇
igst

a
i̄τ̄

µ

αβ̇

+ ̄, β̇

− i, α

a, µ igst
a
i̄

α

β̇

three-gluon i gs√
2
(ifabc)V

µ1µ2µ2
3

a3, µ3

a1, µ1

a2, µ2

p1

p2p3
i gs√

2
(ifabc) 1√

2


 1− 2

1

2

3

+
2− 3

3

2

1

+
3− 1

1

3

2




four-gluon i
(
gs√

2

)2 ∑
Z(2,3,4)

(ifa1a2b)(ifba3a4)×

×(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

µ1, a1 µ2, a2

µ3, a3µ4, a4

i
(
gs√

2

)2 ∑
Z(2,3,4)

(ifa1a2b)(if ba3a4)




1

34

2

−
4

1

3

2



= i
(
gs√

2

)2 ∑
S(2,3,4)

Tr
(
ta1ta2ta3ta4

)
×

×


2

1

34

2

−
1 2

4 3

−
4

1

3

2



Propagators Dirac Weyl Bra-Ket Feynman Chirality-Flow

fermion
iδi̄
/p

=
iδi̄/p

p2 i
δi̄λ̃

α̇
pλ

β
p

p2 i
δi̄|p]〈p|
p2

p←−+ −
i ̄

iδi̄
p2

p
α̇ β

fermion
iδi̄
/p

=
iδi̄/p

p2 i
δi̄λp,αλ̃p,β̇

p2 i
δi̄|p〉[p|
p2

p←−− +
i ̄

iδi̄
p2

α β̇
p

gluon −i δabgµν
p2

p−→µ, a ν, b − iδab

p2 or − iδab

p2

Table 2: The QCD �Rosetta Stone" translating the chirality-�ow notation to other widely-used spinor-helicity notations. Here

Z(2, 3, 4) denotes the set of cyclic permutations, S(2, 3, 4) the set of all permutations over the ordered set of integer indices (2, 3, 4).

V µ1µ2µ2
3 = V µ1µ2µ2

3 (p1, p2, p3) is given in eq. (5.7). For more information, in particular on the various forms of the four-gluon

vertex, see section 5.1 (vertices) and 5.2 (propagators).
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1. Collect all powers of i,
√

2 and coupling constants from vertices and propagators, plus denominators
from propagators and polarization vectors.

2. Assign chirality-flow lines, i.e. dotted and undotted lines, but ignore arrows as this step.
• External fermions and anti-fermions a single dotted or undotted line, plus momentum label.

• External vector bosons a double-line, one dotted and one undotted, and two momentum labels (the actual and the
reference momentum).

• Vector boson propagators a double-line, one dotted and one undotted.

• Fermion propagators a pair of successive lines, turning from dotted to undotted (or vice versa), joined by a
momentum dot.

• Using the appropriate vertices, all lines are connected in the only possible way to form a chirality-flow diagram.

3. Assign chirality-flow arrows.
• Start with any external chirality-flow line, and assign an arrow in an arbitrary direction.

• Follow the line through the diagram, continuing through any potential momentum dot.

• Assign the other arrows such that double-lines from vector bosons or non-abelian vertices have opposing arrows.

• Non-abelian vertices give rise to disconnected pieces, i.e. lines not related to each other by either momentum dots
or sharing double-lines; Apply the above for each disconnected piece independently.

I Due to the sums of chirality flows from the non-abelian vertices, each Feynman diagram is now turned
into a sum of chirality-flow diagrams.

I If it is desired to obtain the result in conventional form with spinor brackets, expand the momentum dots
and translate the lines to spinor inner products.
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e−
+

e+
−

µ−
+

1

µ+

−

+
=

−i2
√

2e3

se+e− s1µ− 〈r1〉

e−

e+

µ−

1

µ+

r

p 1
+
p µ

−

=
−i2
√

2e3

se+e− s1µ− 〈r1〉

(
[e−1]〈1r〉+ [e−µ−]〈µ−r〉

)
[1µ−]〈µ+e+〉

e−
+

e+
−

µ−
+

1

µ+

−

+
=

−i2
√

2e3

se+e− s1µ+ 〈r1〉

e−

e+

µ−

1

µ+
r−p

1 −
p
µ +

=
−i2
√

2e3

se+e− s1µ+ 〈r1〉
[e−µ−]〈µ+r〉

(
−0− [1µ+]〈µ+e+〉

)
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e−
+

e+
−

µ−
+

1 µ+

−+

+

e−
+

e+
−

µ−
+

1

µ+

−

+

=
−i2
√

2e3

sµ+µ− s1e+ 〈r1〉

e−

e+

µ−

1 µ+

r

−p 1
− p e

+ +
−i2
√

2e3

sµ+µ− s1e− 〈r1〉

e−

e+

µ−1

µ+

r
p
1 +

p
e −

=
i2
√

2e3

sµ+µ− s1e+ 〈r1〉
[e−µ−]〈µ+e+〉[e+1]〈re+〉 +

−i2
√

2e3

sµ+µ− s1e− 〈r1〉
[e−1]

(
〈r1〉[1µ−] + 〈re−〉[e−µ−]

)
〈µ+e+〉

I We have left the reference momentum unassigned.

I We may simplify the results by choosing it appropriately, but equal for all four diagrams.

I In the chirality-flow picture it’s already transparent at the diagram level which choices are good choices.

I We did not need to perform a single algebraic manipulation, other than to expand momentum dots!
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q+1

q̄−1

q̄+2

q−2
1+

(a)

q+1

q̄−1

q̄+2

q−21+

(b)

q+1

q̄−1

q̄+2

q−2
1+

(c)

Figure 1: The three diagrams contributing to the partial helicity amplitude M(0→ q−2 1+q̄−1 q
+
1 q̄

+
2 ) multi-

plying the color factor ta1
q2q̄1δq1q̄2

6.3 q1q̄1 → q2q̄2g

We now consider our �rst QCD example, q1q̄1 → q2q̄2g. For this example we will � for comparison �

also show the standard spinor-helicity calculation. We will also for the �rst time see an example of a

disconnected chirality-�ow.

There are six Feynman diagrams in total, and the color structure can be decomposed into four lin-

early indpendent basis vectors (color factors). We will consider the partial helicity amplitude M(0 →
q−2 1+q̄−1 q

+
1 q̄

+
2 ) multiplying the color factor ta1

q2q̄1δq1q̄2 , which has contributions from the three diagrams in

�g. 1.

Using the standard spinor-helicity method, the diagram in �g. 1a is given by

q+1

q̄−1

q̄+2

q−2
1+

=
−ig3

s

s1q̄1sq2q̄2
[q1|τµ| − (/p1

+ /pq̄1
)| /ε

+
1√
2
|q̄1〉〈q2|τ̄µ|q̄2]

=
−ig3

s

s1q̄1sq2q̄2〈r1〉
(
− [q1|τµ|1〉[11]〈rq̄1〉 − [q1|τµ|q̄1〉[q̄11]〈rq̄1〉

)
〈q2|τ̄µ|q̄2]

=
ig3
s

s1q̄1sq2q̄2〈r1〉
[q1q̄2]〈q2q̄1〉[q̄11]〈rq̄1〉 , (6.9)

where in the �rst line we collected the prefactors and denominators from propagators, and wrote down the

strings for each fermion line. The strings begin with the quark, have a τµ or τ̄µ for each vertex, and a /p

or /p for each fermion propagator, where we expanded the propagator momentum. Polarization vectors are

contracted with a τ vector where possible. In the second line we rewrote the slashed propagator momenta

and the slashed polarisation vector in terms of spinors. Finally, we used [11] = 0, and utilized the Fierz

identity between τ and τ̄ to write the result in terms of spinor inner products.

� 27 �

I Diagrams contributing to the color-ordered amplitude with color factor ta1
q2 q̄1

δq1 q̄2 .

−
ig3

s

〈r1〉

 1
s1q̄1 sq2 q̄2

q1

q̄1

q̄2

1 q2
r

−p 1
− p q̄ 1 +

1
sq1 q̄1 s1q2

q1

q̄1

q̄2

1 q2
r

p
1 +

p
q
2

−
1

2sq1 q̄1 sq2 q̄2


q−1

q̄+1

q̄−2

q+2r1
2(p

q
1 +

p
q̄
1 )

+

q̄−2

q+2r1

q−1

q̄+1

−2p1 +

q−1

q̄+1 r 1

q̄−2

q+2

2p1




I Checked that this returns the same as with the ordinary spinor-helicity calculus.

I Here in one step, though!
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q+

q̄−

1

2

(a)

q+

q̄−

1

2

(b)

Figure 2: The two diagrams contributing to the the partial helicity amplitude M(0 → q+g1g2q̄
−) multi-

plying the color factor t1qit
2
iq̄.

polarization vectors in eqs. (3.30) - (3.31) and eqs. (3.34) - (3.35),

εβ̇αh (pi, r) =
|ip]〈im|
fh(ip, im)

=
1

fh(ip, im) im

ip
,

εh,βα̇(pi, r) =
|im〉[ip|
fh(ip, im)

=
1

fh(ip, im) im

ip
. (6.17)

where

h = ∓ , ip and im =

{
r and i , h = −
i and r , h = +

, fh(ip, im) = {imip} =

{
[imip] = [ir] , h = −
〈imip〉 = 〈ri〉 , h = +

, (6.18)

and where ip (im) denotes the positive- (negative-)helicity spinor in gluon i.

For this example we consider the partial helicity amplitude M(0 → q+g1g2q̄
−) multiplying the color

factor t1qit
2
iq̄. This means we only consider the two diagrams in �g. 2. For the diagram in �g. 2b we get

q+

q̄−

1

2

=
−ig2

s

sq1fh,1fh,2

q

q̄

1p

2m

1m

2p

q + 1

=
−ig2

s

sq1fh,1fh,2

(
[q1p](〈1mq〉[q2p] + 〈1m1〉[12p])〈2mq̄〉

)
, (6.19)

while for the diagram in �g. 2a we get AL: Should we make �gures here look more similar to those in

� 31 �

I Diagrams contributing to the color-ordered amplitude with color factor ta1
qi ta2

īq .

I In the following

h =∓ , ip and im =
{

r and i , h =−
i and r , h = + , fh(ip, im) = {imip}=

{
[imip] = [ir] , h =−
〈imip〉= 〈ri〉 , h = +

ip/im denotes the positive-/negative-helicity spinor in gluon i.

q+

q̄−

1

2

=
−ig2

s

sq1fh,1fh,2

q

q̄

1p

2m

1m

2p

q + 1

=
−ig2

s

sq1fh,1fh,2

(
[q1p](〈1mq〉[q2p] + 〈1m1〉[12p])〈2mq̄〉

)
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q+

q̄−

1

2

=
ig2

s

2s12fh,1fh,2


q

q̄

1p

2p

1m

2m

−2p1 − p2

+

q

q̄

1p

2m

1m

2p

2p
1 +

q

q̄

1m

2p

1p

2m

2p2 + p1


=

ig2
s

2s12fh,1fh,2

(
[q1p]〈1mq̄〉(−2[2p1]〈12m〉+ [2p2]〈22m〉)

+ 2〈1m2m〉[2p1p][q1]〈1q̄〉〉+ [q2p]〈2mq̄〉(2[1p2]〈21m〉− [1p1]〈11m〉)
)

The only non-zero case is MHV.
E.g. h1 =−, h2 = +, (1m,1p) = (1, r1) and (2m,2p) = (r2,2). Choose 1p = q and 2m = q̄:

M(q+,g1,g2, q̄−) =−
ig2

s 〈q̄1〉2[2q]
〈q̄2〉〈12〉[21]

〈q̄q〉〈q1〉
〈q̄q〉〈q1〉

=−
ig2

s 〈q̄1〉2〈q1〉(−[21]〈1q̄〉)
〈q1〉〈12〉〈2q̄〉〈q̄q〉[21]

=−
ig2

s 〈q̄1〉3〈q1〉
〈q1〉〈12〉〈2q̄〉〈q̄q〉
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I We present an alternative way to draw Feynman diagrams.
• Read spinor contractions directly from the chirality-flow diagrams; encoded in the diagrams themselves.
• No intermediate algebraic manipulations are required.

I The double-line or flow character of the WvdW formalism has already been noted before. However, in
order to arrive at flow diagrams, one needs to deal with the epsilon structures, which we do from a
diagrammatic perspective with arrow flip identities. These turn fermion spinors to anti-fermion spinors
and vice versa, but are nevertheless identites and easily applied in the chirality-flow picture.

I To get to the nice expressions for MHV amplitudes, for instance, still some work is required, which it is
in any case. However, in the chirality-flow picture we can have a more transparent, more intuitive
understanding of how certain spinor contractions arise from certain diagrams, as well as which choices
of gluon reference vectors might be more sensible.

I An immediate application should be eg. to extend matrix-element programs using Feynman diagrams.
I Outlook:
• Formulating the chirality-flow picture for massive particles and for the SM is work in progress; at this stage, though,

it is clear that it will work.

• Two things on the list afterwards:
I Loop diagrams.
I Amplitude-level description; gain new insights in the space-time structure of scattering amplitudes through the chirality-flow picture.

Thank you!


