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Motivation
[LEP, 2006]

N, = 2.9840 + 0.0082
[P. Janot and S. Jadach, 2019]

N, =2.9975 + 0.0074

Theorem: [C. Jarlskog, 1990]
In the Standard Model with n left-handed lepton doublets and N — n
right-handed neutrinos, the effective number of neutrinos, N,,, defined
by

F(Z — l//S) = N,,Fo,

where Ig is the standard width for one masseless neutrino, satisfies

N, <n.
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https://www.sciencedirect.com/science/article/abs/pii/S0370157305005119?via%3Dihub
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Introduction

Sterile neutrinos measurements

e Light neutrino oscillations
e Precision corrections
e Direct production in colliders
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The simplest 3+1 model
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Four physical neutrino vy, vo, vp, v, with v, o massless and

mpe O(eV) < Mg

This mass matrix is diagonalized by the following mixing matrix

Cs  —S53Sy —Sply
0 Cy -8,
CaS3  CuC3Sy CuCsCy
5483 SaC3Sy 84C3Cy

[C. Jarlskog, 1990] [C.O. Escobar et al., 1993]
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https://www.sciencedirect.com/science/article/abs/pii/037594749090539X
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.47.R1747

The simplest 3+1 model

Number of neutrinos

Isolating non-standard contribution, we can write this as

1
- (x+y)?

v

CF(y) + y2F(x) + 2xyG(x.y)|
where
F(z) = (1 - 428,

G(x,y) = \/1 + (X2 + y2)2 — 2(x2 — y?) {1 _

X2+y2_
2

and
X=mg/Mz, y=mp/Mz.
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The simplest 3+1 model

sin o estimation
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We are looking for the line y = x tan? « lying below experimental limits

LEP :N, = 2.9840 £ 0.0082 — > " |Uu| =sina < 0174 i=eu,T
i

NEW :N, =2.9975+0.0074 — ) " |Uig| =sina < 0.115 i=e,pu,71
i
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The simplest 3+1 model

Neutrino mixing in the Standard Model

V&f) = (UPMNS)aiV,-(m)

Mixing matrix

1 0 0 Ci3 0 S13eii5 Ci2 S12 0
Ums=| 0 ©C3 823 0o 1 0 —S12 Ci2 0O
0 —sp3 O3 —5136“S 0 C13 0 0 1

Experimental values of mixing parameters

01, € [31.38°,35.99°], 65 € [38.4°,53.0°),
f13 € [7.99°,8.91°], &€ [0,27]
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Extended mixing - BSM models

Complete mixing

VDN Uns  Un p(m) _y p(m)
o )=\ Uy U plm) | = p(m)

Observable part

() = (UPMNS)aiV,'(m) + (Ulh)ajAj(m)
— —
SM part BSM part

Wojciech Flieger 8/31



Matrix Theory

Singular values

Singular values o; of a given matrix A are positive square roots of the
eigenvalues ); of the matrix AAT

0i(A) = \/Ni(AAT)

Properties:
@ generalization of eigenvalues

@ always positive
@ stable under perturbations

Unitary matrices

UU' = | = diag(1,1,...,1) = all singular values equal to 1

9/31
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Matrix Theory

Contractions

Al <1

Operator norm (spectral norm)

IAll == sup [|AX]| = omax(A)

llx||=1
Contractions as submatrices of the unitary matrix

H < Uens U

=1 = ||y <1
o o)) U | <
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Unitary dilation

BSM?

dilation Usns U
Upns —— (

=U—>UU =1
Uni Uhh) -

CS decomposition

U= < Upwis U ) _ < W; 0 > g | _CS 8 Q1T 0
=\ Uy Up 0o W, 0 Ql
0l 0 Iy 2

where C > 0 and S > 0 are diagonal matrices satisfying C> + S? = I,
Wi, Qy € Mpyn and Wh, Qo € My« m are unitary matrices.
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Physical Region

m

Q :=conv(Upuys) = {Za,u, | Ui € UB),ap,ecsam >0, aj =1,

i=1 i=1
012,013,023 and J given by experimental values}

Q is divided into four disjoint subsets

Qq:  3+1scenario: ¥ = {01 =1.0,00 =1.0,03 < 1.0},
Qo 3+2 scenario: ¥ = {0y =1.0,02 < 1.0,03 < 1.0},
Qs : 3+3 scenario: ¥ = {0y < 1.0,02 < 1.0,03 < 1.0},

Q4 : PMNS scenario: ¥ = {01 =1,00 =1,03 =1}.
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a-parametrization and prescribed singular values

MPMNS = (I— OC)W = TW
where W is a unitary matrixand T =/ — «

vy 0 O
T=1| 1ty o 0 |, X={01,02,03}
31 B2 I33
Entry (I):m> EW (II): Am? 2100 eVZ  (III1): Am? ~ 0.1 — 1 eV?
Tii=1—amn 0.99870 + 1 0.976 -1 0.990 + 1
Too=1—02 099978 =+ 1 0.978 =+ 1 0.986 =+ 1
T33 =1—ag  0.99720 = 1 0.900 = 1 0.900 + 1
= |az1| 0.0 +-0.00068 0.0 +-0.025 0.0 +-0.017
=|asr|  0.0+0.00270 0.0 = 0.069 0,0+ 0.045
T32 =|as|  0.0+0.00120 0.0+ 0.012 0.0 +0.053

[M. Blennow et al., 2017] (95% CL)
It is possible to construct lower triangular matrices with prescribed
eigenvalues and singular values [C-K. Li and R. Mathias, 2004].
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https://link.springer.com/article/10.1007%2FJHEP04%282017%29153
https://link.springer.com/article/10.1023%2FA%3A1021969818438

3+1 scenario

Estimation of the "light-heavy" mixing

Q4 : 3+1 scenario: ¥ = {01 =1.0,00 =1.0,03 < 1.0}

(5 w) (% &)
0 W OC)g'

We are interested in the estimation of the light-heavy mixing sector which is
given by

Un = W4 S12Q),

where W; € C**3 is unitary, Sy = (0,0, —s)" and Q. = €', 0 < (0, 2x].
Taking into account exact values of the W4 we can estimate the
light-heavy mixing by the analytical formula

\Uia| = |wis|-[\/1— 02|, i=epr

Wojciech Flieger 14/31



3+1 scenario

Estimation of the "light-heavy" mixing

Estimation of the "light-heavy" mixing via CS decomposition
@ (ID:m> EW.
Ours : |Ues| € [0,0.021],  |U,4| €[0.00013,0.021], |U,4| € [0.0115,0.075].
Others : |Ues| < 0.041, |U,4| <0.030, |U,4| < 0.087 [J. de Blas, 2013]
@ (II): Anf > 100 eV2,
Ours : |Ues| € [0,0.082], |U,4| € [0.00052,0.099], |U,4| € [0.0365,0.44].

@ (III):Am? ~0.1—16eV2

Ours : |Ues| € [0,0.130], |U,4| € [0.00052,0.167], |U-4] € [0.0365,0.436].
Others : |Ues| € [0.114,0.167] , |Uus| €[0.0911,0.148] , |U;4] <0.361.
[C. Giunti et al., 2017] [M. Dantler et al., 2018]
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https://www.epj-conferences.org/articles/epjconf/abs/2013/21/epjconf_lhcp2013_19008/epjconf_lhcp2013_19008.html
https://link.springer.com/article/10.1007%2FJHEP06%282017%29135
https://link.springer.com/article/10.1007%2FJHEP08%282018%29010

3+1 scenario

Comparisons

e From the Z decay:
iUl <0.0132, i=eu,7

@ From mixings (So far):
Zi |U,'4|2 S 000867, I =@, w, T

e From mixings and singular values (Ours):
S U2 < 0.00651, i=e,u,T
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3+1 scenario

Other use of singular values (details in backup)

@ Introducing to neutrino physics the method of the inverse singular
value problem. It allows to construct mixing matrices with encoded
minimal number of additional neutrinos and to confront them with
experimental data.

@ Analysis of the amount of the space for additional neutrinos based
on deviations of singular values from unity.

Results: e.g. Am? ~ 0.1 — 1 eV? — 03 = 0.889

@ A study of possible distinction between three scenarios with
different number of additional neutrinos on the level of
experimental data using singular values and corresponding
division of the neutrino mixing space Q.

Results: 3+2 and 3+3 scenarios cannot be distinguished.
3+1 scenario differs.
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Summary and Outlook

e New prediction for the Z decay width significantly improves
the light-heavy mixing estimation.

e New analytical formula for light-heavy mixing in the 3+1
scenario as a function of singular values has been derived.

@ New estimations of upper bounds for the light-heavy mixings
in the 3+1 scenario using CS decomposition are given.
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Backup slides

Backup slides
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Amount of space for n neutrinos: Analysis

e Construction of matrices with prescribed singular
values, e.g., in 3+1 scenario we take
oy =1,00 =1,03 < 1, together with the
requirement on the elements to stay within
experimental limits.

e Go with the "free" singular values as low as
possible, e.g., in the 3+1 scenario we take o3 the
smallest possible.
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Amount of space for n neutrinos: Results

341
o3
m> EW 0.9968
Am? > 100 eV? 0.900
AmP ~ 0.1 —16eV? 0.889
3+2
o2 o3
m> EW 0.9987 0.9986
Am? > 100 eV? 0976 0975
Am? ~ 0.1 —1¢eV? 0.986 0.985
3+3
o1 o2 o3
m> EW 0.9998 0.9996 0.9996
An? > 100 éV? 0979 0977 0.9773
Am? ~01—-1eV? 0991 0.989 0.989

Error: 0.00003 (follows from Weyl’s inequality, slides 26 and 27)

Wojciech Flieger
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Backup slides

Distinction of the 3+1 scenario: Analysis

0'120'2:1.

e In each massive scenario 108 matrices are
produced, starting from o3 as large as possible
and lowering it systematically to the smallest
obtained value (previous slide).

e For each value of o3 the smallest and the largest
values of produced matrix elements are taken.

e Repeating the procedure over possible o3 values,
the allowed ranges of the 3 x 3 matrix elements
are determined.
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Distinction of the 3+1 scenario: Results

(I:m> EW (I1): Am? 2100 V2 (III): Am? ~ 0.1 — 1 eV?

(1,1) 0.99885+-0.99999  0.97641 -+ 0.99996 0.99020 - 0.99999
Exp: 0.99870 = 1 0.976 = 1 0.990 =1
(2,2) 0.99980 +0.99999  0.99331 - 0.99999 0.98646 - 0.99999
Exp: 0.99978 + 1 0.978 = 1 0.986 =1
(3,3) 0.99721 +0.99996  0.90040 - 0.99985 0.90015 = 0.99958
Exp: 0.99720 + 1 0.900 = 1 0.900 =1
(2,1) 0.00001 +~0.00062 0.00031 - 0.02214 0.00014 = 0.01615
Exp: 0.0 + 0.00068 0.0 +0.025 0.0 +0.017
(3,1) 0.00002 +0.00266  0.00048 - 0.06892 0.00012 = 0.04500
Exp: 0.0 +0.00270 0.0 =+ 0.069 0.0 +0.045
(3,2) 0.00008 +-0.00113  0.00052 — 0.01196 0.00024 - 0.05281
Exp: 0.0 +0.00120 0.0 +0.012 0.0 +0.053

So far no distinction among 3+n scenarios is possible. However,...

Similar results for 3+2 and 3+3.

Wojciech Flieger
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(I) Narrowing mixing spreads for individual sing. val.

@ Generation of matrices with a prescribed set of singular values
and with elements within experimental ranges.

@ From the set of these matrices take the smallest and the largest
value of each element.

E.g.: Am? > 100 eV2, ¥ = {1,1,0.900} :

|Ao.900| =
0.999623 + 0.999999 (1.5%) 0 0
0.000002 - 0.000753 (3%) 0.999623 - 0.999999 (2%) 0
0.000606 + 0.011919 (16%) 0.000606 = 0.011923 (94%) 0.900002 -+ 0.900678 (1%)

Values in the brackets represent the percentage of the current
experimental bounds.
For the other massive cases these values do not exceed 15%.
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Matrix norm

A matrix norm is a function || - || from the set of all complex (real
matrices) into R that satisfies the following properties
|Al| > 0and [|[A| =0<= A =0,
oAl = [al[|All,a € C,
IA+ Bl < [[All + I,
IAB < [|A[llB]
Examples of matrix norms
o spectral norm: HAH = max||x||,=1 HAXHg = 0'1(A)

@ Frobenius norm: ||Al|r = / Tr(ATA) = \/Z,'-fj:1 |aj|? = \/ZL o?
@ maximum absolute column sum norm:

[All1 = max|x,=1 [[AX[loc = max; };|aj]
@ maximum absolute row sum norm:

[Alloo = max|ix||.=1 |AX[lcc = max; >_; |aj|
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Weyl’s inequality for singular values

Let A and B be a m x n matrices and let ¢ = min{m, n}. Then

Uj(A + B) < i(A)+ Uj_,'_H(B) fori<j
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Error Estimation

Let us assume that the V matrix which realizes some BSM scenario
includes an error matrix E which is of the form V + E. Using Weyl
inequalities for decreasingly ordered pairs of singular values of V and
V + E, the following relation takes place

oi(V + E) — oi(V)| < [|E]].

A precision for elements of the A inthe m > EW is 1075, In our
analysis we keep the same precision for all massive cases. This does
not contradict experimental results since we still work within
experimentally established intervals. Thus, all entries of Error matrix
can be taken as Ej; ~ 0.00001. Therefore, uncertainty of the calculated
singular values is bounded by ||E|| = 0.000083.
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Algorithm

The following steps lead to a contraction settled by Upuns and then to its unitary dilation of a
minimal dimension

1) Select a finite number of unitary matrices U;, i = 1,2, ...m, within experimentally allowed
range of parameters 63, 623 and 4.

2) Construct a contraction Uy as a convex combination of selected matrices U;

m

m
V= Za;U,-, ity ., am > 0, Za,- =1.
i=1 i=1
3) Find singular value decomposition of V, i.e.
V=wzal

where Wy, Qq are unitary, X is diagonal, and determine number 7 of singular values strictly less
than 1.

4) Use CS decomposition
Upmns  Up
U= =
( Un Unn )

<W1O) 1%\ (a o
o W s|c e

to find the unitary dilation U € M3, )« (3+x) Of contraction Uy.
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3+1 via CS decomposition

Thus we work with the following set of singular values
o1 =1,00 = 1,03 < 1 and the CS decomposition takes the form

10 0] 0
<W10>0100 Qo )
0 W, 0 0 ¢c|-s OQE'

00 s|c

We are interested in the estimation of the light-heavy mixing sector
which is given by
U = W1 S12Q}, (2)

where W, e C3*3 is unitary, S;» = (0,0, —s)" and
Q> = €, 6 € (0, 2x]. Parametrizing the matrix W, as usual by Euler
angles we get
—if

(3)

T epitd i T
Un = —(Wes, W3, Wy3)' s€"" = —(—812€7 "%, 823C13, C23C13) ' S€



Backup slides

3+1 via CS decomposition

We can see that if we want estimate just the absolute values for the
elements of light-heavy sector we are left only with

sl = V1 —c? = |\/1-d5|. (4)
Thus for each massive scenario we get

"m> EW" = m; < |0.08359,
"Am? > 100 V2" = m, < |0.43795|, (5)
"AmM? ~ 0.1 —16V? = mjy < |0.43795|.
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Results on slide 21 have been obtained by taking exact maximal
values of wgs, w,;3 and w;3, which follow from the singular value

decomposition.

|Uia| = |wia| - |\/1— 05|, i=eprT

0.020
0.018
| U€4 | 0.016
0.014

0.012

0.9970 0.9975 0.9980 0.9985 0.9990 0.9995
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