
Progress on Boosted Top Production in SCET

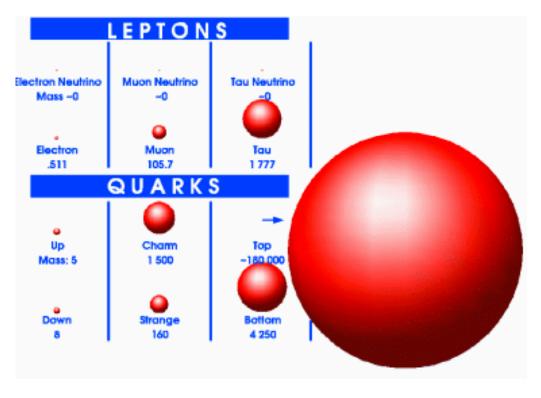
André H. Hoang

University of Vienna

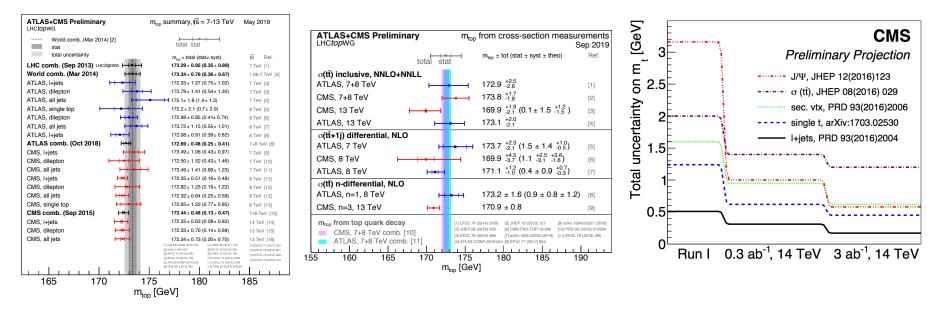
Der Wissenschaftsfonds.

Content

- Boosted top quarks
 - \rightarrow disentangle production, (single) top evolution and decay
 - \rightarrow basic features of factorization
- Running mass for scales below m_Q: MSR mass m_t^{MSR}(R)
 - \rightarrow C++/Mathematica code:
- MC top mass calibration: NNNLL + NLO corrections to 2-jettiness for top production in e⁺e⁻ collisions

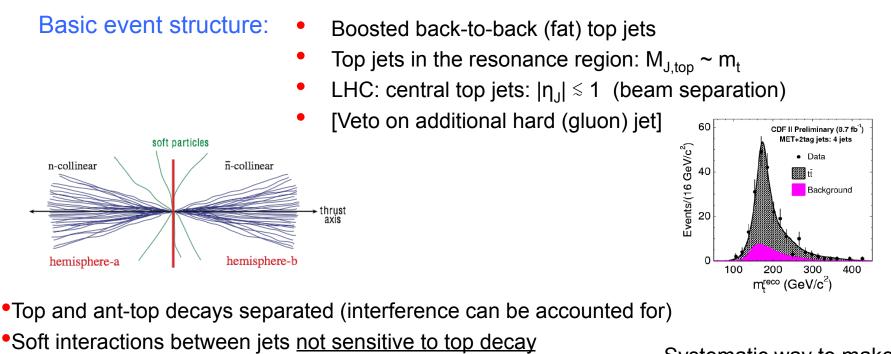

REvolver

- First principles studies of Herwig top mass parameter: Hadronization model studies
- Conclusions
- Demonstration of


.. not just the heaviest SM particle

• Very special physics laboratory: $\Gamma_t \gg \Lambda_{QCD}$

- Top quark: heaviest known particle
- Most sensitive to the mechanism of mass generation
- Peculiar role in the generation of flavor.
- Top might not be the SM-Top, but have a non-SM component.
- Top as calibration tool for new physics particles (SUSY and other exotics)
- Top production major background it new physics searches
- One of crucial motivations for New Physics
- Top treated a particle: p_T , spin, σ_{tot} , $\sigma(single top)$, $\sigma(tt+X)$,.. $\rightarrow q \gg \Gamma_t$
- Quantum state sensitive low-E QCD and unstable particle effects: m_t , endpoint regions $\rightarrow q \sim \Gamma_t$
- Multiscale problem: p_T , m_t , Γ_t , Λ_{QCD} , ... (depends on resolution of observable)


Top Mass Measurements

- Most precise measurements from direct reconstruction (uncertainties ~0.5 GeV), but measures MC top mass parameter m^{MC}_t
- Other methods are still less precise, but can measure a field theory top mass.
- Methods based on reconstructed distributions involving top decay products represent delicate multiscale problems: p_T , m_t , Γ_t , Λ_{QCD}
 - \rightarrow perturbation theory insufficient, resummations needed, hadronization at leading order
 - m_t^{reco}
 - M_{b-jet} + lepton
 - M_{tt} (close to 2m_t)
- $M_{J/\psi}$ + lepton
- M_{T2} and variants
- b-jet energy

- B-meson energy
- $M_{\gamma\gamma}$ (close to $2m_t$)
- Lepton energy endpoints

Factorization for Boosted Top Quarks

 $\sigma \sim H_Q \times H_m \times B \otimes D$

"mass mode" "jet"

(top-bottom collinear color line)

Single-top treatment of top and anti-top decays

•Clean separation of scales: p_T (or E_{cm}) $\gg m_t \gg \Gamma_t \gg \Lambda_{QCD}$

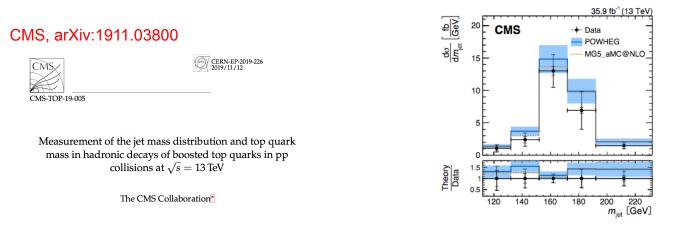
"hard"

Factorized cross section:

Systematic way to make resumed predictions for top decay sensitive observables.

universität wien

COST Meeting 2020, Cracow, February 11-13, 2020


"soft"

"decay"

S

Factorization for Boosted Top Quarks

- Comes at the cost of smaller statistics at the LHC \rightarrow not that problematic: see below!
- But clearer theoretically to do systematic predictions with resummation of logarithms and including nonperturbative effects
- Highly useful to answer address subtle high-precision issues such as the direct top mass measurement interpretation problem

- Groomed X-cone top jets
- 35.9 fb⁻¹, p_T > 400 GeV
- $m_t^{MC} = 172.6 \pm 0.4^{stat} \pm 1.6^{exp} \pm 1.5^{model} \pm 1.0^{theo} \text{ GeV}$
- Statistics actually not the limiting issue!
- Great potential for higher precision!

Abstract

A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at $\sqrt{s}=13$ TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9 fb $^{-1}$. The measurement is performed in the lepton-jets channel of ti events, where the lepton is an electron or muon. The products of the hadronic top quark decay $t \rightarrow b W \rightarrow bq q\bar{q}$ are reconstructed as a single jet with transverse momentum larger than 400 GeV. The ti cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6 \pm 2.5 GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of three relative to an earlier measurement.

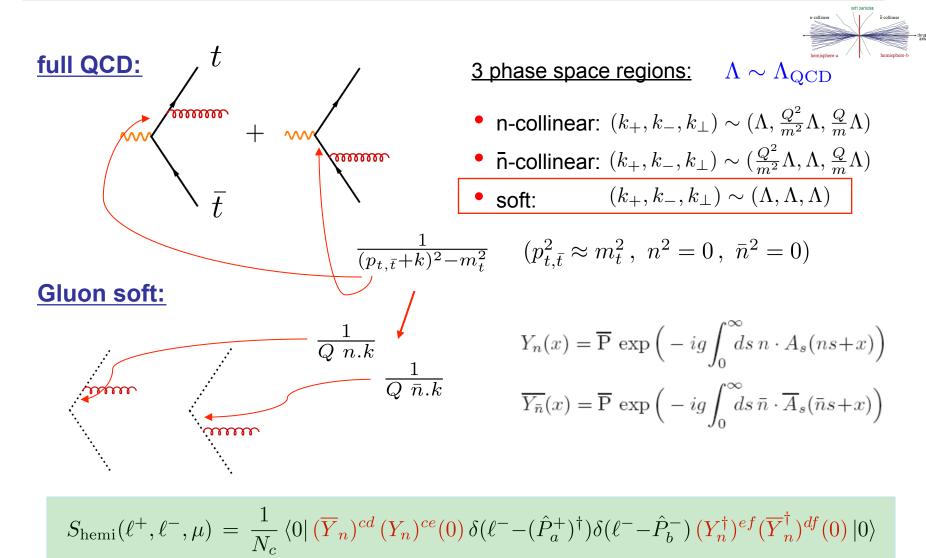
Submitted to Physical Review Letters

Fleming, AHH, Mantry, Stewart., xxx.xxxx

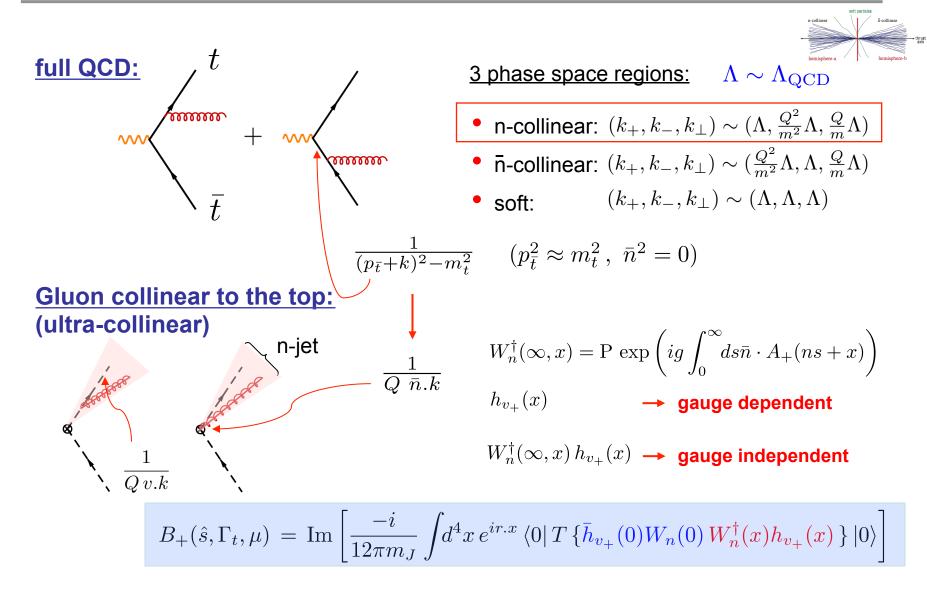
Jet function:
$$B_{+}(\hat{s},\Gamma_{t},\mu) = \operatorname{Im}\left[\frac{-i}{12\pi m_{J}}\int d^{4}x \, e^{ir.x} \langle 0|T\{\bar{h}_{v_{+}}(0)W_{n}(0)W_{n}^{\dagger}(x)h_{v_{+}}(x)\}|0\rangle\right]$$

- Soft in the top rest-frame: ULTRA-COLLINEAR
- Perturbative, universal (e⁺e⁻, LHC)
- dependent on mass, width, color charge
- Contains "Fermi motion" of decaying top quark (analogous to B decays)
- Main top mass sensitivity of production stage dynamics

Soft function:

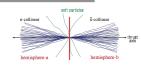

$$S_{\text{hemi}}(\ell^+,\ell^-,\mu) = \frac{1}{N_c} \sum_{X_s} \delta(\ell^+ - k_s^{+a}) \delta(\ell^- - k_s^{-b}) \langle 0 | \overline{Y}_{\bar{n}} Y_n(0) | X_s \rangle \langle X_s | Y_n^{\dagger} \overline{Y}_{\bar{n}}^{\dagger}(0) | 0 \rangle$$

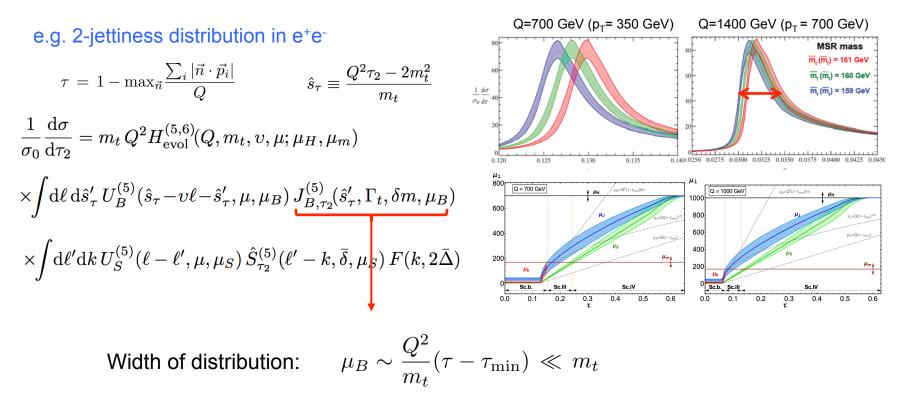
- non-perturbative
- Renormalization scale dependence perturbative
- dependent on <u>color charge</u>, <u>kinematics</u>

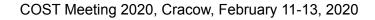

Independent of the mass and E_{cm} !

 $B^{\rm Born}_{\pm}(\hat{s},\Gamma_t) = \frac{1}{\pi m_t} \frac{\Gamma_t}{\hat{s}^2 + \Gamma_t^2}$

$$\hat{s} = \frac{M^2 - m_t^2}{m_t}$$

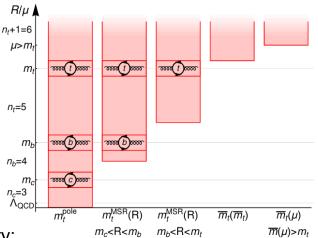





Top mass in the bHQET jet function B:

If we want to avoid the pole mass renormalon problem we need a short-distance mass scheme. Short-distance mass schemes always depend on a IR subtraction scale.

In the resonance region we need a short-distance mass $m_t(\mu_B \ll m_t)$

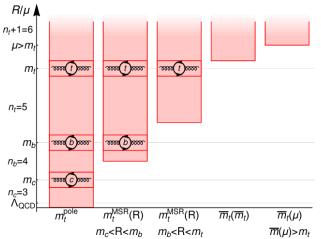

- Short-distance mass m_t(μ) only absorbes self energy corrections from scales > μ
- MSbar mass only appropriate for $\mu \gtrsim m_t$
- MSR mass: AHH, Jain, Scimemi, Stewart, 0803.4214
 - Defined from self-energy diagrams
 - Consistent RG-flow for $\mu < m_t$
 - Accounts systematically for lower flavor thresholds
 - Implements universality consistent to heavy quark symmetry:

 $t \leftrightarrow b \leftrightarrow c$

• RG-evolution is linear in μ

$$\begin{array}{ll} \text{MSbar:} & m_Q^{\text{pole}} - \overline{m}_Q = \overline{m}_Q \, \sum_{n=1}^{\infty} \, a_n^{\overline{\text{MS}}}(n_\ell, n_h) \left(\frac{\alpha_s^{(n_\ell+1)}(\overline{m}_Q)}{4\pi} \right)^n \\ \\ \text{MSR:} & m_Q^{\text{pole}} - m_Q^{\text{MSRn}}(R) = R \, \sum_{n=1}^{\infty} \, a_n^{\overline{\text{MS}}}(n_\ell, 0) \left(\frac{\alpha_s^{(n_\ell)}(R)}{4\pi} \right)^n \end{array}$$

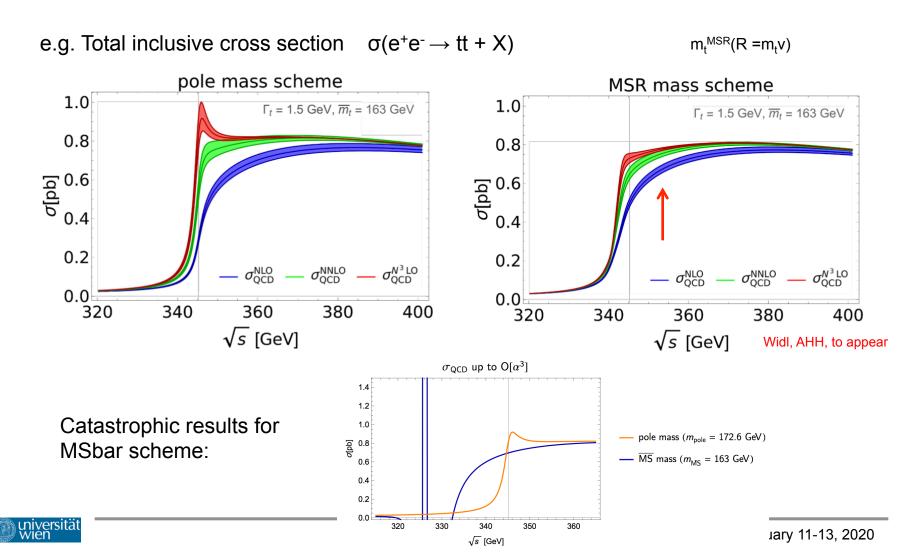
1 massive quark:1704.01580Several massive quarks:1706.08526


- Short-distance mass $m_t(\mu)$ only absorbes self energy corrections from scales > μ
- MSbar mass only appropriate for $\mu \gtrsim m_t$
- MSR mass:

nive

- Defined from self-energy diagrams
- Consistent RG-flow for $\mu < m_t$
- Accounts systematically for lower flavor thresholds
- Implements universality due to heavy quark symmetry:

 $t \leftrightarrow b \leftrightarrow c$


RG-evolution is linear in µ

R

$$\begin{array}{c} \text{MSbar} \quad \overline{m}_{Q}^{(n_{\ell}+1)}(m_{Q}) = \overline{m}_{Q}^{(n_{\ell}+1)}(\mu) \exp\left[-\sum_{k=0}^{\infty} \gamma_{m,k}^{(n_{\ell}+1)} \int_{\log \mu^{2}}^{\log m^{2}_{Q}} d\log \bar{\mu}^{2} \left(\frac{\alpha_{s}^{(n_{\ell}+1)}(\bar{\mu})}{4\pi}\right)^{k+1}\right] \\ \text{MSR:} \quad m_{Q}^{\text{MSR}}(m_{Q}) - m_{Q}^{\text{MSR}}(R) = -\sum_{n=0}^{\infty} \gamma_{n}^{R} \int_{R}^{m_{Q}} dR \left(\frac{\alpha_{s}^{(n_{\ell})}(R)}{4\pi}\right)^{n+1} \\ \text{"R-evolution"} \\ \text{MSR mass closely related to previously defined} \\ \text{low scale short-distance masses: 1S, PS, RS,...} \\ \begin{array}{c} 172 \\ 170 \\ 168 \\ 0 \end{array} \\ \begin{array}{c} 172 \\ 170 \\ 168 \\ 164 \\ 0 \end{array} \\ \begin{array}{c} m_{l}^{\text{MSR}}(R) \\ m^{\text{PS}}(\mu_{l} = 50 \text{ GeV}) \\ m^{\text{PS}}(\mu_{l} = 80 \text{ GeV}) \\ 0 \end{array} \\ \begin{array}{c} 50 \\ 100 \\ 150 \\ R \end{array} \\ \begin{array}{c} \text{GeV} \end{array} \end{array}$$

 MSR mass can reduce the size of corrections in threshold related problems for an appropriate physical choice of scale.

REvolver

Mateu, Lepenik, AHH, to appear NEW !!

C++/Mathematica code for automated running and matching of masses and couplings in QCD

- Implements all knowledge available for most popular mass schemes: MSbar, MSR, 1S, PS, RS, RGI + pole
- Fully automatized RG-evolution (linear and linear)
- Implementation of all flavor threshold effects (top, bottom, charm)
- Full control over all input (order, scale-dependence, parametric input, etc.)
- Core concept to deal with parametric and order-dependent issues (uncertainties)
- Pole mass series implemented to all orders.

Applications to far:

•	 e⁺e⁻ 2-jettiness distribution Top MC mass calibration (ungroomed hemisphere jet masses) Systematic relation between m_t^{MC} and field theory mass schemes 	Butenschoen etal., 1604.08122
	(parton level)	AHH, Plätzer, Samitz 1807.06617
	 Consistency of width and hadronization in Pythia and Herwig 	AHH, Plätzer, Samitz w.i.p.
	 NNNLL + NNLO corrections in resonance region 	AHH, Mateu, Pathak, Stewart, w.i.p.
•	Soft-dropped groomed top jet masses at the LHC	AHH, Pathak. Stewart, 1708.02586
	Top MC mass calibrationStructure of nonperturbative effects	AHH, Pathak. Stewart, 1906.11843
		AHH, Plätzer, Samitz w.i.p.
•	More to come: e.g. lepton energy distribution (semi- leptonic and all-lepton decays)	

Main motivation: Improved understanding of top quark mass measurements with high precision, but interesting by itself.

MC Top Quark Mass

• Direct top mass measurements determine the Mont-Carlo top mass parameter. \rightarrow Aim: learn about the relation of m^{MC} to field theory renormalization schemes.

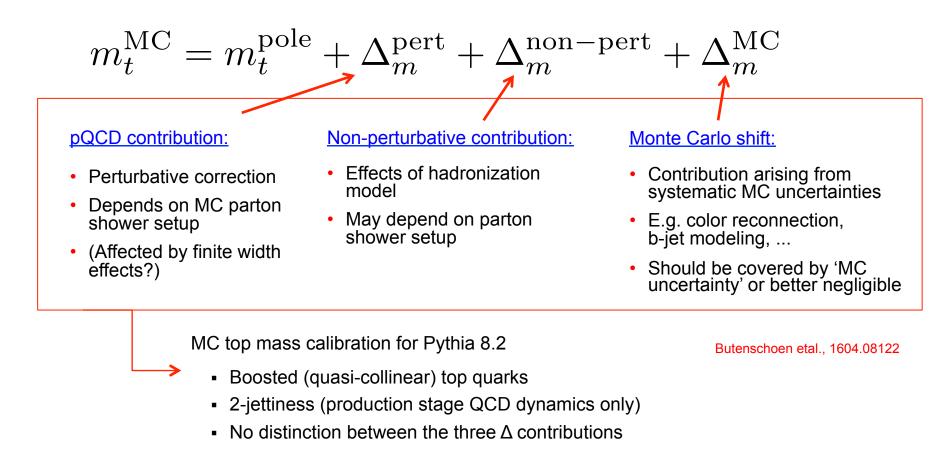
$$m_t^{\rm MC} = m_t^{\rm pole} + \Delta_m^{\rm pert} + \Delta_m^{\rm non-pert} + \Delta_m^{\rm MC}$$

pQCD contribution:

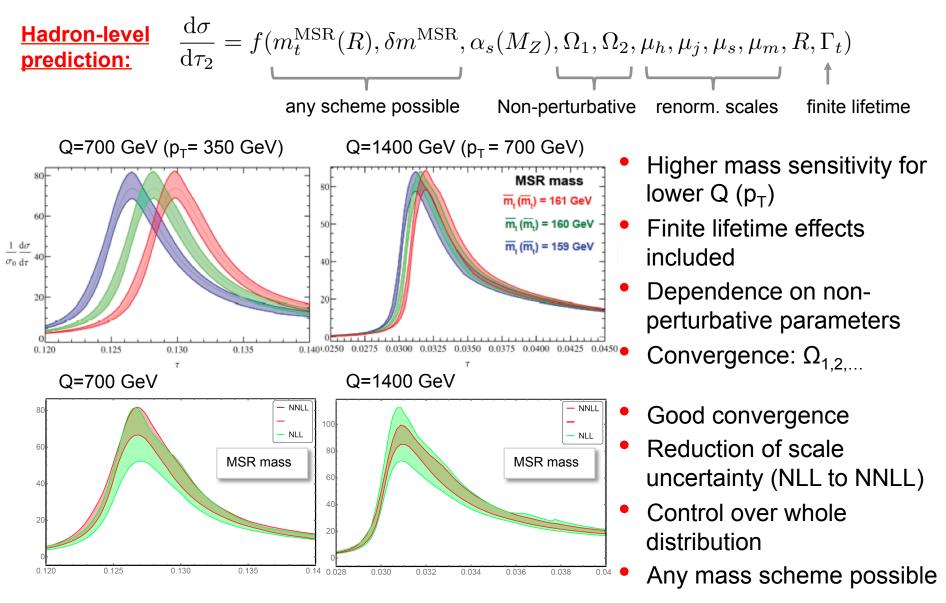
- Perturbative correction
- Depends on MC parton shower setup
- (Affected by finite width effects?)

Non-perturbative contribution:

- Effects of hadronization model
- May depend on parton shower setup

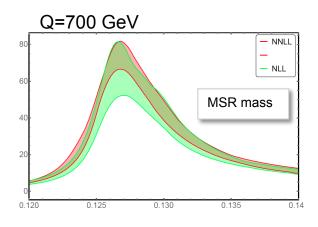

Monte Carlo shift:

- Contribution arising from systematic MC uncertainties
- E.g. color reconnection, b-jet modeling, (finite width), ...
- Should be covered by 'MC uncertainty' or better negligible

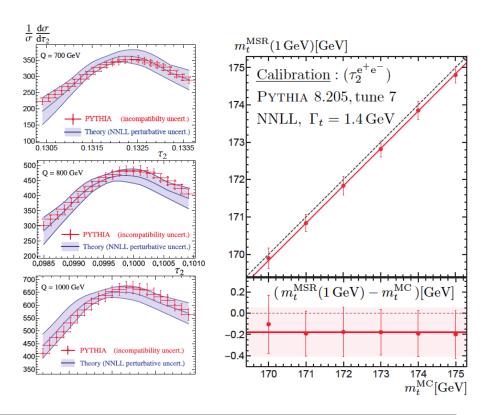

MC Top Quark Mass

• Direct top mass measurements determine the Mont-Carlo top mass parameter. \rightarrow Aim: learn about the relation of m^{MC} to field theory renormalization schemes.

2-Jettiness Distribution at NNLL/NLO



universität wien


COST Meeting 2020, Cracow, February 11-13, 2020

mt^{MC} Calibration using e⁺e⁻ 2-jettiness

- Butenschoen, Dehnadi, Hoang, Mateu, Preisser, Stewart (2017), arxiv:1608.01318
 - numerical relation between Pythia MC top mass and MSR mass using 2-jettiness in e⁺e⁻ in the resonance region from calibration fits
 - $m_t^{\text{MC}} = m_t^{\text{MSR}}(1 \,\text{GeV}) + (0.18 \pm 0.22) \,\text{GeV}$
 - Fits of NNLL+NLO+had.corr. theory predictions with Pythia 8.205
 - Good agreement between Pythia and analytic calculation

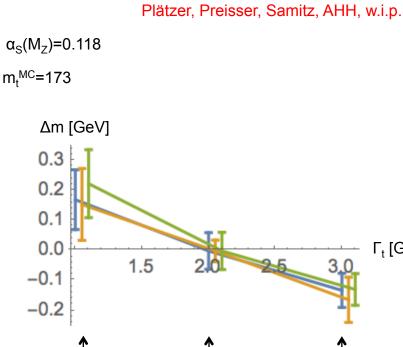
$$m_t^{\rm MC} = m_t^{\rm pole} + (0.57 \pm 0.28) \,{\rm GeV}$$

2-Jettiness Distribution at NNNLL/NNLO

- NNLO-FO corrections to hard, mass-mode, soft and jet functions
- NNNLL corrections to all RG evolution (4-loop cusp and 3-loop non-cusp)
- NNLO SCET jet function to extend away from resonance also known

80. Had, $e^+e^- \rightarrow t\bar{t}$, Q = 700 GeVResonant (bHQET) cross Preliminary section, subleading (~10%) SCET and non-singular Hemisphere Jets Gap Subtraction Off $(1/\sigma)d\sigma/dM_J$ [GeV⁻¹ 60. corrections still missing. Pole Mass $\mathbf{L}\mathbf{L}$ Imposing no soft-function gap-40. NLL subtraction and using the pole NLL' mass scheme leads to a **NNLL** reasonable convergence due NNLL 20. to a cancellation of $N^{3}LL$ renormalon contributions in the soft and the jet function. 0. Ĭ65. 170. 175. 180. 185, AHH, Mateu, Pathak, Stewart., w.i.p. M_I [GeV] $\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}\tau_2} = m_t Q^2 H_{\mathrm{evol}}^{(5,6)}(Q, m_t, \upsilon, \mu; \mu_H, \mu_m) \\ \times \int \mathrm{d}\ell \, \mathrm{d}\hat{s}_{\tau}' \, U_B^{(5)}(\hat{s}_{\tau} - \upsilon\ell - \hat{s}_{\tau}', \mu, \mu_B) \, J_{B,\tau_2}^{(5)}(\hat{s}_{\tau}', \Gamma_t, \delta m, \mu_B)$ $\times \int \mathrm{d}\ell' \mathrm{d}k \, U_S^{(5)}(\ell - \ell', \mu, \mu_S) \, \hat{S}_{\tau_2}^{(5)}(\ell' - k, \bar{\delta}, \mu_S) \, F(k, 2\bar{\Delta})$

AHH, Lepenik, Stahlhofen, 1904.12839


Fit Result: Top Width Dependence

Top width dependence

 $\Delta m = m_t^{MSR}[\Gamma_t] - m_t^{MSR}[\Gamma_t=1.4]$

- Clear sensitivity to top width value.
- Pythia resonance peak position does <u>not</u> depend on value of Γ_t
- Theory resonance peak position increases with T_t
- Conclusion: Pythia does not describe the top width dependence in a way compatible with theory.

The m^{MC} calibration results obtained with Pythia^{8.205} contain a systematic shift related to Pythia's incorrect description of finite-lifetime effects.

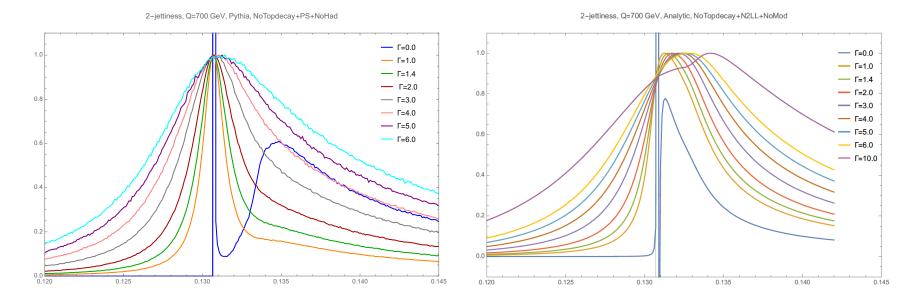
Γ_t [GeV]

2.0

Three colors: tunes 1, 3, 7

0.7

Error bars: standard deviation of best mass value distribution in 500 profile function fits


14

Top Resonance: factorization vs. Pythia

Plätzer, Preisser, Samitz, AHH, w.i.p.

QCD Factorization

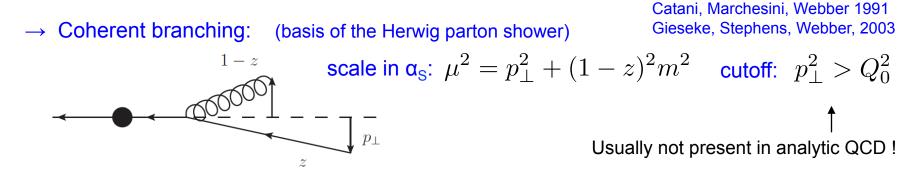
MC generators themselves need to be scrutinized and understood thoroughly when/before addressing the interpretation of the MC top quark mass.

Motivation for "On the Shower Cut Dependence of the Quark Mass Parameter in Angular Ordered Parton Showers" (arXiv:1807.06617)

Pythia

MC Top Quark Mass

• Direct top mass measurements determine the Mont-Carlo top mass parameter. \rightarrow Aim: learn about the relation of m_t^{MC} to field theory renormalization schemes.


$$m_t^{\text{MC}} = m_t^{\text{pole}} + \Delta_m^{\text{pert}} + \Delta_m^{\text{non-pert}} + \Delta_m^{\text{MC}}$$

$$p_{\text{QCD contribution:}}$$
• Perturbative correction
• Depends on MC parton
shower setup
• (Affected by finite width
effects?)
• May depend on parton
shower setup
• May depend on parton
• May depend on parton
• Boosted (quasi-collinear) top quarks
• Stable top quarks

2-jettiness (production stage QCD dynamics only)

nversitat

Cutoff in Angular Ordered Parton Showers

2-Jettiness τ_2 distribution In the peak region (for e⁺e⁻ and boosted tops) can be analytically computed in QCD factorization (SCET) at NLL+NLO and coherent branching (CB) at NLL.

universität wien


COST Meeting 2020, Cracow, February 11-13, 2020

Cutoff in Angular Ordered Parton Showers

Dependence on the parton shower cut Q_0 :

• Pole of the top quark propagator = $m_t^{CB}(Q_0) \neq m_t^{pole}$ (coherent branching mass)

$$m_t^{\text{CB}}(Q_0) = m_t^{\text{pole}} - \frac{2}{3}Q_0\alpha_s(Q_0) + \mathcal{O}(\alpha_s(Q_0)^2)$$

In the presence of the shower cut the ultra-collinear radiation generated by CB produces exactly the mass scheme change correction that is required so that the generator mass is exactly the coherent branching mass m_t^{CB}(Q₀).

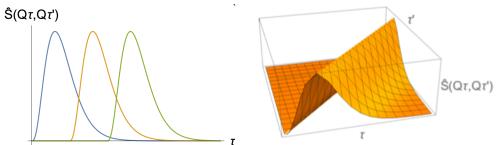
$$\sigma(m_1, Q, \ldots) = \sigma(m_2, Q, \ldots) + \delta m \times \frac{\mathrm{d}}{\mathrm{d}m} \sigma(m, Q, \ldots) \Big|_{m=m_1} + \ldots$$

$$\delta m = m_2 - m_1$$
 Scheme change correction

- The shower cut also affects **large-angle soft radiation**. The corresponding effects are directly tied to the amount of hadronization effects that are fixed by tuning
- All conclusions explicitly cross checked by correspondence between analytic QCD factorization calculations and analytic solutions of the CB algorithm.

Plätzer, Samitz, AHH; arXiv:1807.06617

Plätzer, Samitz, AHH; w.i.p


How well does Herwig's hadronization model match the analytic prediction? We start with an analysis for massless quarks first.

- For massless quark production a change of Q_0 only modifies the soft function $\frac{d\sigma}{d\tau}(\tau, Q, Q_0) = \int_{0}^{Q_{\tau}} d\ell \, \frac{d\hat{\sigma}}{d\tau} \Big(\tau - \frac{\ell}{Q}, Q, Q'_0\Big) \, S_{\text{mod}}(\ell + \Delta_{\text{soft}}(Q_0) - \Delta_{\text{soft}}(Q'_0))$
- Any change of the shower cut from Q₀ to Q₀' can be compensated by a modification of the soft function gap (or its first moment) by the amount

$$\Delta_{\text{soft}}(Q_0) - \Delta_{\text{soft}}(Q'_0) = 16 \int_{Q'_0}^{Q_0} \mathrm{d}R \left[\frac{\alpha_s(R)C_F}{4\pi} + \mathcal{O}(\alpha_s^2) \right]$$

• Convolution above implies that each parton level bin τ ' get smeared with a function that should satisfy

$$\hat{S}(Q\tau, Q\tau') = S_{\text{mod}}(Q(\tau - \tau'))$$

Herwig Cluster Model

- standard hadronization model of Herwig: cluster hadronization model [Webber (1984)]
- final state gluons split into q ar q

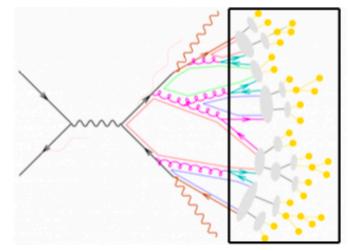


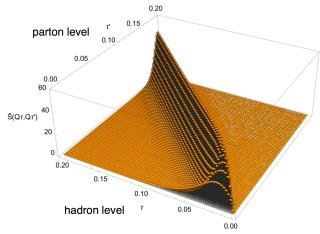
Figure from D. Zeppenfeld

- color-connected quarks combined into preconfined clusters
- for heavy clusters: fission along string axis (repeat until light enough)
- final clusters decay isotropically into hadrons
- various tuning parameters, specifying e.g. mass spectrum of daughter clusters, maximum mass of final clusters, constituent masses, ...

Plätzer, Samitz, AHH; w.i.p

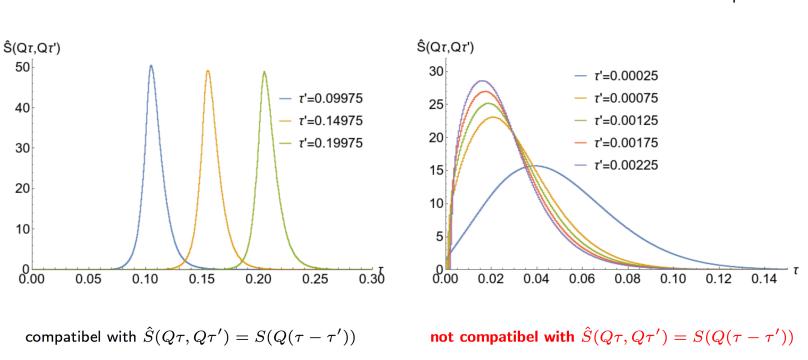
We want to study Herwig's cluster model in more detail.

• Define (observable dependent) hadronization transfer function


$$\frac{\mathrm{d}\sigma}{\mathrm{d}\tau}(\tau,Q) = \int \mathrm{d}\tau' \; \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\tau}(\tau',Q) \hat{S}(Q\tau,Q\tau')$$

- Interpretation of $\hat{S}(Q\tau, Q\tau')$: probability distribution that an event with partonic value τ' has a hadron level value τ .
- Compatibility with QCD factorization demands:

$$\hat{S}(Q\tau, Q\tau') = S(Q(\tau - \tau'))$$


We modified Herwig to allow the extraction of the event-by-event parton-to-hadron level transfer matrix.

- Results can be filled in a 2D histogram that shows how each parton level bin is migrated into hadron level bins
- Can be used to extract Herwig's hadronization function

Plätzer, Samitz, AHH; w.i.p

effective hadronization function in the tail:

effective hadronization function in the peak:

- This means that $\Delta_m^{\text{non-pert}}$ has a significant size for Herwig's cluster hadronization model.
- Modification of Herwig's cluster fission algorithms mandatory to make it compatible with QCD factorization in the resonance region where the highest top mass sensitivity arises.

Conclusions / Outlook

- Boosted top quarks are a very useful system to study because production, single top evolution and top decay can be nicely separated in the context of QCD factorization
- Allows to do many first principles calculations
- Allows to study subtle questions (e.g. MC top mass parameter interpretations for boosted top observables)
- Allows to scrutinize the components of MC generators (parton shower and hadronization model) and check the individual compatibility to QCD

