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Aims
 Demonstrate Emittance Exchange and Reverse 

Emittance Exchange in the Wedge using MICE 
data

 Emittance Exchange can be demonstrated by 
looking at the change in phase space density of 
the particle selection before and after having 
passed through a Wedge absorber

 Emittance Exchange is shown by a decreased 
transverse phase space density (x, px, y, py) and 
increased longitudinal phase space density (z, pz), 
(and vice versa for Reverse Emittance Exchange)

 Can use a number of techniques to calculate 
phase space density: KDE, KNN, Voronoi 
Tessellations, etc.

 MICE beam only has a small natural dispersion      
→ Use beam reweighing techniques to select 
beams with desired dispersion
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Previously: 

Particle Selection – 4D transverse

 Will look at a number of selections for when the wedge is present/absent 

and see the advantages/disadvantages of selection cuts

 All will include:

 TOF01 cut

 Radius cut < 150 mm

 Momentum cut 130 -150 MeV/c

 Single track in the Upstream Tracker and a single track in the Downstream 

Tracker

 Will compare this cut with the selection for when there is an Upstream Track 

but no Downstream Track, to look at selection bias.
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4

No Wedge Wedge

10-140 4D Transverse phase space density

 Single track that has gone both through Upstream and Downstream Tracker



5 10-140 4D Transverse phase space density

 Single track that has gone both through Upstream and Downstream Tracker

 And single track that has only gone through Upstream Tracker

No Wedge Wedge



Is KDE a poor Estimator?

 Produces very different results 

depending on input selection

 It does show agreement with 

Francois’ KNN estimate for the 

9th percentile of the no 

absorber upstream sample 

where the data is comparable 

(bar for any small differences in 

magnetic fields)

 Why the different results? 
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Histograms, KDE and KNN 
Old Faithful Geyser Eruptions

 Highly predictable geothermal feature

 Spews boiling hot water 100 – 180 feet into the air

 Erupts 20 times a day. Eruptions can be predicted 
to within a 90% accuracy in a 10 minute interval

 Eruptions typically last 1.5 to 5 minutes

 Shows distinct bimodal feature

 The following will look at a sample of the data 
which should follow the parent distribution i.e. all 
eruptions in time

 This will be basis to determine if a density estimate 
follows the true underlying density
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Histograms, KDE and KNN – Basics (from Silverman)

 Probability density function gives the probability a quantity is found in 
the interval:

𝑃 𝑎 < 𝑋 < 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 < 𝑏

 The 𝑚𝑡ℎ histogram interval for origin 𝑥0 and bin width ℎ is given by: 
[𝑥0 +𝑚ℎ, 𝑥0 𝑚+ 1 ℎ)

 The histogram is then defined by:

መ𝑓 𝑥 =
1

𝑛ℎ
(𝑛𝑜. 𝑜𝑓 𝑋𝑖 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑏𝑖𝑛 𝑎𝑠 𝑥)

 Choice of origin and bin width can give “apparent structure effects” 
that are due to random error

 Discontinuity of histograms can cause difficulty if derivatives of the 

estimate are required
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Naive Estimator

 For a random variable 𝑋 with density 𝑓, then:

𝑓 𝑥 = lim
ℎ→0

1

2ℎ
𝑃(𝑥 − ℎ < 𝑋 < 𝑥 + ℎ)

 Then

መ𝑓 𝑥 =
1

2ℎ𝑛
[𝑛𝑜. 𝑜𝑓 𝑋𝑖 , … , 𝑋𝑛 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑖𝑛 (𝑥 − ℎ, 𝑥 + ℎ)]

 Define weight function 𝑤 by

𝑤 𝑥 = ቊ
1/2 𝑖𝑓 𝑥 < 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Then

መ𝑓 𝑥 =
1

𝑛
෍

𝑖=1

𝑛
1

ℎ
𝑤

𝑥 − 𝑋𝑖
ℎ
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Kernel Estimator
 The kernel estimator is obtained by replacing the weight 

function of the naive estimator by a kernel function K 
satisfying:

න
−∞

∞

𝐾 𝑥 𝑑𝑥 = 1

 The kernel estimator of bandwidth h is then defined by

መ𝑓 𝑥 =
1

𝑛ℎ
෍

𝑖=1

𝑛

𝐾
𝑥 − 𝑋𝑖
ℎ

 Varying the bandwidth h determines the level of smoothing, 
as h tends to zero, the smoothing becomes a sum of Dirac 
delta spikes, but if h becomes large, all detail is obscured.

 If K is non-negative everywhere, then መ𝑓 itself will be a 
probability density. The probability density function of the 
sample has been convolved with the kernel

 This can lead to non-negative tails to naturally positive data, 
especially when the data distribution is long-tailed. 
Parameter choice can be used to minimize the undesired 
effects
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K-nearest neighbour
 Define the distance 𝑑(𝑥, 𝑦) between two points on the line to 

be |𝑥 − 𝑦| and for each 𝑡 define 𝑑1 𝑡 ≤ 𝑑2 𝑡 ≤ ⋯ ≤ 𝑑𝑛 𝑡 to be 
the distances arranged in ascending order.

 The 𝑘𝑡ℎ nearest neighbour density estimate is then given by

መ𝑓 𝑡 =
𝑘 − 1

2𝑛𝑑𝑘(𝑡)

 i.e. (𝑘 − 1) observations fall in the interval [𝑡 − 𝑑𝑘 𝑡 , 𝑡 + 𝑑𝑘(𝑡)]

 The nearest neighbour estimate is inversely proportional to the 
size of box needed to contain it -> undersmoothing in tails 
should be reduced

 መ𝑓(𝑡) is positive and continuous everywhere, but its derivative 
will be discontinuous at all the same points as 𝑑𝑘

 The nearest neighbour estimate will not be a probability 
density (but only an approximation) as it does not integrate to 
unity

 For 𝑡 less than the smallest data point, 𝑑𝑘 𝑡 = 𝑋𝑘 − 𝑡 and for 

𝑡 > 𝑋𝑛: 𝑑𝑘 𝑡 = 𝑡 − 𝑋(𝑛−𝑘+1), thus ׬−∞
∞ መ𝑓 𝑡 𝑑𝑡 is infinite and the 

tails of መ𝑓 die away slowly
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KNN relation to KDE

 Let 𝐾 𝑥 be a kernel function integrating to one

 The 𝑘𝑡ℎ nearest neighbour estimate is given by

መ𝑓 𝑡 =
1

𝑛𝑑𝑘(𝑡)
෍

𝑖=1

𝑛

𝐾
𝑡 − 𝑋𝑖
𝑑𝑘(𝑡)

 መ𝑓(𝑡) is the kernel estimate evaluated at 𝑡 with window width 𝑑𝑘(𝑡) where 

the choice of 𝑘 governs the smoothing.
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1-D estimate to n-dimensional estimate

 KDE in 1-D 

መ𝑓 𝑥 =
1

𝑛ℎ
෍

𝑖=1

𝑛

𝐾
𝑥 − 𝑋𝑖
ℎ

Becomes in n-D:

መ𝑓 Ԧ𝑥 =
1

𝑛ℎ𝑑
෍

𝑖=1

𝑛

𝐾
1

ℎ
( Ԧ𝑥 − 𝑋𝑖)

where ׬𝑅𝑑𝐾 Ԧ𝑥 𝑑𝑥 = 1 for a d-dimensional space and ℎ𝑑 is the smoothing parameter 
for each particular dimension. ℎ𝑑 can also be given by a smoothing matrix e.g. the 
covariance matrix if it is representative of the underlying distribution.

 The choice of kernel only has a minor effect (slightly different efficiencies), and 
thus a gaussian kernel (most common) will be used to retain the differentiability 
of መ𝑓 Ԧ𝑥 . The gaussian kernel is given by:

𝐾 Ԧ𝑥 = (2𝜋)−𝑑/2exp(−
1

2
Ԧ𝑥𝑇 Ԧ𝑥)
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1-D estimate to n-dimensional estimate

 KNN in 1-D

መ𝑓 𝑡 =
𝑘 − 1

2𝑛𝑑𝑘(𝑡)

Becomes in n-D (from Francois):

Ԧ𝑓 𝑥 =
𝑘

𝑛κ𝑑𝑅𝑘
𝑑 =

𝑘Γ(
𝑑
2 + 1)

𝑛𝜋
𝑑
2𝑅𝑘

𝑑

where 𝑑𝑘(𝑡) is now the Euclidean distance 𝑅𝑖 = Ԧ𝑥 − 𝑥𝑖 = Ԧ𝑥 − 𝑥𝑖
𝑇( Ԧ𝑥 − 𝑥𝑖), 

κ𝑑 is the volume of a unit d-ball (in 1-D it is equal to two), Γ(
𝑑

2
+ 1) is Euler’s 

gamma function, while k and (k-1) differ due to counting conventions of 

whether the test point is included.
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Choice of smoothing parameter

 The Mean Integrated Squared Error (MISE) can describe the accuracy of 
Ԧ𝑓(𝑡) as an estimator of 𝑓.

 𝑀𝐼𝑆𝐸 Ԧ𝑓 = 𝐸 ׬ Ԧ𝑓 𝑥 − 𝑓(𝑥)
2
𝑑𝑥 = 𝐸}׬ Ԧ𝑓 𝑥 − 𝑓 𝑥 }2𝑑𝑥 + )𝑉𝑎𝑟׬ Ԧ𝑓 𝑥 )𝑑𝑥

 𝑀𝐼𝑆𝐸 Ԧ𝑓 = ׬ 𝐵𝑖𝑎𝑠 Ԧ𝑓 𝑥
2
+ 𝑉𝑎𝑟( Ԧ𝑓 𝑥 ) 𝑑𝑥

 As Ԧ𝑓 𝑥 = σ𝑖=1
𝑛 Ԧ𝑓 𝑥 ~

𝑘

𝑟𝑑
, the optimal choice of 𝑘 is determined by a trade-off 

between the variance and the squared bias.
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For small 𝑟 the estimate follows the 

data closely as its not biased but has a 

very large variance due to fluctuations.

For large 𝑟 the estimate varies little as it 

is less sensitive to fluctuations, but 

becomes more biased.



Bias and Variance

 For KNN:

𝐵𝑖𝑎𝑠 Ԧ𝑓 𝑥 ≅
𝜇2(𝑤)∇

2𝑓(𝑥)

2(κ𝑑𝑓(𝑥))
2
𝑑

𝑘

𝑛

2

𝑉𝑎𝑟 Ԧ𝑓 𝑥 ≅
𝑓2(𝑥)

𝑘

With 𝜇2(𝑤) the second moment of the uniform kernel and ∇2𝑓(𝑥) the Laplacian 

of the density field. The MISE is of order:

𝑀𝐼𝑆𝐸 𝑘 = 𝒪
𝑘

𝑛

4
𝑑

+
1

𝑘

Which admits a minimum for a parameter k of order:

𝑘~𝑛−4/(4+𝑑)

The optimal rate of convergence for a KNN estimator is then:

𝑀𝐼𝑆𝐸 𝑘 = 𝒪 𝑛−4/(4+𝑑)
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Bias and Variance
 For KDE (with second-order kernels):

𝐵𝑖𝑎𝑠ℎ( Ԧ𝑥) ≈
1

2
ℎ2∇2𝑓( Ԧ𝑥)න 𝑡1

2𝐾 Ԧ𝑡 𝑑Ԧ𝑡

𝑉𝑎𝑟[ Ԧ𝑓(𝑥)] ≈ 𝑛−1ℎ−𝑑𝑓( Ԧ𝑥)න𝐾 Ԧ𝑡
2
𝑑Ԧ𝑡

The MISE is then approximated by

1

4
ℎ4 න𝑡1

2𝐾 Ԧ𝑡 𝑑Ԧ𝑡

2

න ∇2𝑓( Ԧ𝑥) 2𝑑 Ԧ𝑥 + 𝑛−1ℎ−𝑑න𝐾 Ԧ𝑡
2
𝑑Ԧ𝑡

The optimal window width to minimize MISE is given by

ℎ𝑜𝑝𝑡
𝑑+4 = 𝑑න𝐾 Ԧ𝑡

2
𝑑Ԧ𝑡 න 𝑡1

2𝐾 Ԧ𝑡 𝑑Ԧ𝑡

−2

න ∇2𝑓( Ԧ𝑥) 2𝑑 Ԧ𝑥

−1

𝑛−1

Therefore

𝑀𝐼𝑆𝐸 ℎ = 𝒪 𝑛−4/(4+𝑑)

This is  same as for KNN, that is the rate of convergence to the density estimate is 
the same for KNN and KDE. The rate of convergence for the histogram is given by

𝑀𝐼𝑆𝐸 ∆ = 𝒪 𝑛−2/(2+𝑑)
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KDE Transverse 

Phase Space 

Density

19

Blue – Full Upstream sample

Orange – Upstream sample that made it Downstream

Green – Full Downstream sample

Red – Upstream sample that made it to TOF2

Magenta – Downstream sample that made it to TOF2

No Wedge Wedge



KDE Transverse 

Phase Space 

Density

20

Blue – Full Upstream sample

Orange – Upstream sample that made it Downstream

Green – Full Downstream sample

Red – Upstream sample that made it to TOF2

Magenta – Downstream sample that made it to TOF2

No Wedge Wedge



KNN Transverse 

Phase Space 

Density

21

Blue – Full Upstream sample

Orange – Upstream sample that made it Downstream

Green – Full Downstream sample

Red – Upstream sample that made it to TOF2

Magenta – Downstream sample that made it to TOF2

No Wedge Wedge



KNN Transverse 

Phase Space 

Density
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Blue – Full Upstream sample

Orange – Upstream sample that made it Downstream

Green – Full Downstream sample

Red – Upstream sample that made it to TOF2

Magenta – Downstream sample that made it to TOF2

No Wedge Wedge



KDE vs KNN23

Full Upstream Sample

Blue – KDE      Red – KNN

Slight differences due to KDE convolving the density 

with the kernel, while for KNN it has been smoothed 

to ensure area of graph is one

No Wedge Wedge



KDE vs KNN24

Full Upstream Sample

Blue – KDE      Red – KNN

Slight differences due to KDE convolving the density 

with the kernel, while for KNN it has been smoothed 

to ensure area of graph is one

No Wedge Wedge



25 Full Upstream Sample

Blue – KDE – No Wedge

Red – KNN – No Wedge

Green – KDE – Wedge

Yellow – KNN – Wedge

Should be identical bar 

for any differences in 

smoothing due to KDE 

and KNN.

Wedge and No Wedge 

should have same input 

beam

Increased sample size 

may eliminate bumps in 

mid-density region 



26 Full Upstream Sample

Blue – KDE – No Wedge

Red – KNN – No Wedge

Green – KDE – Wedge

Yellow – KNN – Wedge

Should be identical bar 

for any differences in 

smoothing due to KDE 

and KNN.

Wedge and No Wedge 

should have same input 

beam

Increased sample size 

may eliminate bumps in 

mid-density region 
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Top left and Right:

Upstream sample which 

made it Downstream

Bottom left and Right:

Downstream sample

Blue – KDE

Red – KNN

The No Wedge and 

Wedge Upstream 

samples are no longer 

comparable as it has 

been biased by the 

Downstream selection

The Upstream to 

Downstream samples do 

however show the 

change in phase space 

density for that selection

No Wedge Upstream

No Wedge Downstream

Wedge Upstream

Wedge Downstream
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Top left and Right:

Upstream sample which 

made it Downstream

Bottom left and Right:

Downstream sample

Blue – KDE

Red – KNN

The No Wedge and 

Wedge Upstream 

samples are no longer 

comparable as it has 

been biased by the 

Downstream selection

The Upstream to 

Downstream samples do 

however show the 

change in phase space 

density for that selection

No Wedge Upstream

No Wedge Downstream

Wedge Upstream

Wedge Downstream



Change in Sample Size – Toy Scenario

 See effect of change in sample size, as 
sample size increases, should approach 
underlying density of sample

 Random 4-D distribution with mean = 0, 
Standard Deviation = diag(1,1,1,1)

Blue: n =1000, k = 31

Red: n = 2000, k = 44

Green: n = 3000, k = 54

Magenta: n = 4000, k = 63

Cyan: n = 5000, k = 70

 Underlying sample density is 
approached as sample size increases, 
optimal k adjusts to reflect increase in 
sample size
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Change in sample size, 

same k – Toy Scenario

 Changing sample size but keeping k constant 
increases MISE, as a suboptimal k is chosen

 D-dimensional radius for a test point 
increases/decreases as the test point needs 
to find more/less neighbours. This can give an 
apparent decrease/increase in the phase 
space density. As the sample size is increased, 
the phase space density becomes less 
susceptible to small changes in optimal k

Blue: n =1000, k = 54

Red: n = 2000, k = 54

Green: n = 3000, k = 54

Magenta: n = 4000, k = 54

Cyan: n = 5000, k = 54
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Change in k, same 

sample size – Toy scenario

 Choosing a suboptimal k leads to an increase 
in MISE

 When comparing data samples, one needs 
to use the same conditions for the sample i.e. 
use the same k to n relation e.g. 𝑘~𝑛−4/(4+𝑑)

 A MISE that may not have been minimized 
may be desirable  in areas that have been 
over or under smoothed

Blue: n =3000, k = 31

Red: n = 3000, k = 44

Green: n = 3000, k = 54

Magenta: n = 3000, k = 63

Cyan: n = 3000, k = 70
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Missing Data - Toy Scenario
Scraping and Transmission Losses

 Left – Expected Density for a Gaussian sample in each 
dimension normalized to the maximum density. As the 
dimension increases, particles more likely be found at a 
low phase space density

Toy example (next slides):

 4D Gaussian sample – Mean = 0, Standard Deviation = 
diag(1,1,1,1)

 Full sample – No cuts – Blue

 Cut at +/- 2 sigma in one dimension called ‘X’ – red

 Cut at +/- 1 sigma in one dimension called ‘X’ – green

 Cut at +/- 2 sigma in each dimension – magenta

 Cut at +/- 1 sigma in each dimension – cyan
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Full sample – No cuts –

Blue

Cut at +/- 2 sigma in one 

dimension called ‘X’ – red

Cut at +/- 1 sigma in one 

dimension called ‘X’ –

green

Cut at +/- 2 sigma in each 

dimension – magenta

Cut at +/- 1 sigma in each 

dimension – cyan

2 sigma cut causes ~5%

cut in 1D and ~17% in 4D 

which alters the density 

and distribution only 

slightly

1 sigma cut causes far 

greater change (~32% 

cut in 1D, ~79% cut in 4D)

The k value is related to n, 

if the distribution is denser, 

than the calculated 

density will also be denser



Missing Data 

Toy Scenario
34

Full sample – No cuts – Blue

Cut at +/- 2 sigma in one dimension called ‘X’ – red

Cut at +/- 1 sigma in one dimension called ‘X’ – green

Cut at +/- 2 sigma in each dimension – magenta

Cut at +/- 1 sigma in each dimension – cyan



 Left - original sample – red line shows k-nearest neighbour for point at centre of 

yellow circle

 Middle - subsample from original – red line distance only has slight change, k adjusts 

according to n. As n becomes small the error increases

 Right – Aperture cut by the green sub-circle – points at large radius are removed. 

While n has reduced, the k is now ideal for the subsample distribution.

 For points with a bounding circle affected by the aperture cut, the k-nearest 

neighbour may be further away, while for points at the centre of the sample the 

nearest neighbour is closer as the k is reduced, but no close points are removed
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No Wedge (left) and

Wedge (right)

X Distribution (Top) and 

Density (Bottom)

Blue – Full Upstream Sample

Red – Upstream Sample

which makes it Downstream

Green – Upstream Sample 

which does not make it 

Downstream

No Wedge Upstream Wedge Upstream

No Wedge Upstream Wedge Upstream

Small preference for 

larger magnitude x not to 

make it downstream

Wedge case shows slight 

directional bias as well. 

The Wedge does not 

transmit up to 15% of 

particles that would have 

made it downstream 

otherwise. 



Wedge Upstream

Wedge UpstreamNo Wedge Upstream

No Wedge Upstream

No Wedge (left) and 

Wedge (right)

Y Distribution (Top) and 

Density (Bottom)

Blue – Full Upstream Sample

Red – Upstream Sample

which makes it Downstream

Green – Upstream Sample 

which does not make it 

Downstream

The Wedge counteracts 

some of the aperture 

cut effects, so that both 

low and high density 

particles do not make it 

downstream. This results 

in more similar 

distributions, however it 

is direction dependent.



Wedge Upstream

Wedge UpstreamNo Wedge Upstream

No Wedge Upstream

No Wedge (left) and 

Wedge (right)

Radius Distribution 

(Top) and Density 

(Bottom)

Blue – Full Upstream Sample

Red – Upstream Sample

which makes it Downstream

Green – Upstream Sample 

which does not make it 

Downstream

Not only high radius 

particles are eliminated. 

It is more likely for low to 

mid radius particles to be 

eliminated as there are 

simply more of them.

The double peak is due 

to the triangular shape of 

the distribution.



Wedge Upstream

Wedge UpstreamNo Wedge Upstream

No Wedge Upstream

No Wedge (left) and 

Wedge (right)

Px Distribution (Top) 

and Density (Bottom)

Blue – Full Upstream Sample

Red – Upstream Sample

which makes it Downstream

Green – Upstream Sample 

which does not make it 

Downstream

The Px and Py data are 

less affected by the 

aperture cut than the 

radius. 

Px of higher density are

more likely to be

affected by the wedge

than in the no wedge

case



Wedge Upstream

Wedge UpstreamNo Wedge Upstream

No Wedge Upstream

No Wedge (left) and 

Wedge (right)

Py Distribution (Top) 

and Density (Bottom)

Blue – Full Upstream Sample

Red – Upstream Sample

which makes it Downstream

Green – Upstream Sample 

which does not make it 

Downstream

The Py distribution shows 

a directional preference 

for particles that don’t

make it downstream. This 

is due to the x-py

correlation



Wedge Upstream

Wedge UpstreamNo Wedge Upstream

No Wedge Upstream

No Wedge (left) and 

Wedge (right)

Pt Distribution (Top) 

and Density (Bottom)

Blue – Full Upstream Sample

Red – Upstream Sample

which makes it Downstream

Green – Upstream Sample 

which does not make it 

Downstream

Higher Transverse momenta 

are less likely to make it 

downstream, but do not 

show the same distribution 

shape as for radius

This results in the upstream 

and downstream samples 

being affected more in two 

of the four dimensions.



4D Transverse density
42

No Wedge Upstream Wedge Upstream

Blue – Full Upstream Sample

Red – Upstream Sample which makes it Downstream

Green – Upstream Sample which does not make it 

Downstream

Blue distributions are fairly similar, 

however the green distribution 

has become broader as some 

lower radius particles have been 

eliminated by the wedge



Phase Space Density Evolution Full sample43

No Wedge Upstream Wedge Upstream



Phase Space Density Evolution

Only sample which makes it downstream
44

No Wedge Upstream Wedge Upstream



Phase Space Density Evolution

 Liouville: Phase Space Density doesn’t change

 When look at phase space density of a selection of particles through the 
cooling channel when no absorber is present it remains constant bar for small 
changes due to the absorber windows

 The upstream sections of the wedge and no wedge case are not
comparable as the selection has been biased by the wedge

 The wedge shows an increase in the phase space density for many particles. It 
also contains a significant number of particles that haven’t gone through the 
wedge

 When look at full sample of particles at each station, there is a clear change 
between the upstream and downstream section as the particle distributions 
have changed in a non-random way

45



Conclusion

 KDE is not a poor estimator, for second-order kernels it has the same rate of 
convergence as for KNN

 The density calculated is driven by the particle selection

 The density is only conserved for that selection

 MICE has significant transmission losses. When comparing the Upstream and 
Downstream sections these transmission losses as well as scraping or 
scattering need to be accounted for as they bias the density calculation

 Without accounting for this, the absorber and no absorber cases can’t be
compared

 When looking at the density of a particle selection through the cooling 
channel, it remains conserved for the no absorber case, and shows 
significant changes when the wedge is present
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The End
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