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Incident Muon Beam
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Demonstrate Emittance Exchange and Reverse
Emittance Exchange in the Wedge using MICE
data

Emittance Exchange can be demonstrated by
looking at the change in phase space density of
the particle selection before and after having
passed through a Wedge absorber

Emittance Exchange is shown by a decreased

transverse phase space density (x, px, vy, py) and
increased longitudinal phase space density (z, pz),
(and vice versa for Reverse Emittance Exchange)

Can use a number of fechniques to calculate
phase space density: KDE, KNN, Voronoi
Tessellations, etc.

MICE beam only has a small natural dispersion
— Use beam reweighing techniques to select
beams with desired dispersion



Previously:
Particle Selection — 4D fransverse

» Will look at a number of selections for when the wedge is present/absent
and see the advantages/disadvantages of selection cuts

» Al will include:
» TOFO1 cut
» Radius cut < 150 mm
» Momentum cut 130 -150 MeV/c

» Single track in the Upstream Tracker and a single track in the Downstream
Tracker

» Will compare this cut with the selection for when there is an Upstream Track
but no Downstream Track, to look at selection bias.




10-140 4D Transverse phase space density

» Single frack that has gone both through Upstream and Downstream Tracker
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No Wedge

TKU density (blue) vs TKD density (red)
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10-140 4D Transverse phase space density

» Single track that has gone both through Upstream and Downstream Tracker

»  And single frack that has only gone through Upstream Tracker

Wedge

TKU density (blue) vs TKD density (red)
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s KDE a poor Estimatore

MICE internal

- 1515 Cycle 2017/03

Hun setiing 7
- MAUS v3.2.0

®» Produces very different results
depending on input selection

» |t does show agreement with
Francois’ KNN estimate for the
?th percentile of the no
absorber upstream sample
where the data is comparable
(bar for any small differences in
magnetic fields)

—- » Why the different resultse
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Histograms, KDE and KNN
Old Faithful Geyser Eruptions

» Highly predictable geothermal feature

Spews boiling hot water 100 — 180 feet into the air

» Frypts 20 times a day. Eruptions can be predicted
to within a 90% accuracy in a 10 minute interval

» Fruptions typically last 1.5 to 5 minutes
» Shows distinct bimodal feature

» The following will look at a sample of the data
which should follow the parent distribution i.e. all
eruptions in time

» This will be basis to determine if a density estimate
follows the true underlying density



Histograms, KDE and KNN — Basics (from Silverman)

0.6
> » Probability density function gives the probability a quantity is found in
g the interval:
£ 0at ] g
2 P(a<X<b)=j f(x)dx foralla<b
= a
0.2
» The m!" histogram interval for origin x, and bin width h is given by:
e [xo +mh, xo(m + 1DR)
Eruption length (min)
» The histogram is then defined by:
06 . 1
2 W flx) = — (no.of X; in the same bin as x)
4
§0.4r
3 » Choice of origin and bin width can give “apparent structure effects”
62 that are due to random error
» Discontinuity of histograms can cause difficulty if derivatives of the
: J , estimate are required
% 1 2 3 4 ‘ 6

Eruption length (min)



Density estimate

02

Naive Estimator

» [For arandom variable X with density f, then:

\A\W f(x)=}li_r)r(1)%P(x—h<X<x+h)
4

/ \ = Then

1
H | f fx) = n[no of X;, ..., X,, falling in (x — h,x + h)]
| f/ k
‘J At L » Define weight function w by
T2 5 & 0 (172 iflxl <1
Eruption length (min) w(x) = {0 TR

» Then

=3 ()



Kernel Estimator

» The kernel estimator is obtained by replacing the weight
function of the naive estimator by a kernel function K
satisfying:

j_o:oK (X)dx =1

/ » The kernel estimator of bandwidth his then defined by

A ) -3 5
02t / / |
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g
> 04
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(== ]

g / \ » Varying the bandwidth h determines the level of smoothing,

/ ‘\\ ¥ \ as h tends to zero, the smoothing becomes a sum of Dirac

| I It ikes, but if h | , all detail i :
o ;/ z' : : 5“}‘_1 delta spikes, but if h becomes large, all detail is obscured

= |f K is non-negative everywhere, then f itself will be a
probability density. The probability density function of the
sample has been convolved with the kernel

Eruption length (min)

» This can lead to non-negative tails to naturally positive data,
especially when the data distribution is long-tailed.
Parameter choice can be used to minimize the undesired
effects




0.6

Density estimate
-
o

o
~N

K-nearest neighbour

A

A 5
Eruption length (min)

- |

6

Define the distance d(x,y) between two points on the line to
be |x — y| and for each t define d,(t) < d,(t) < --- < d,(t) to be
the distances arranged in ascending order.

The k™" nearest neighbour density estimate is then given by

l.e. (k — 1) observations fall in the interval [t — d, (t), t + dj (t)]

The nearest neighbour estimate is inversely proportional to the
size of box needed to contain it -> undersmoothing in tails
should be reduced

f(t) is positive and continuous everywhere, but its derivative
will be discontinuous at all the same points as d

The nearest neighbour estimate will not be a probability
density (but only an approximation) as it does not integrate to
unity

For t less than the smallest data point, d,(t) = X, — t and for

t > Xp: di(t) =t — Xn_ps1y, thus [ f (D)dt is infinite and the
tails of f die away slowly



KNN relation 1o KDE

®» | et K(x) be akernel function integrating to one

» The k'™ nearest neighbour es’rimo’re IS given by

f(&) =

ndk(t) (dk(t)>

= £(t) is the kernel estimate evaluated at t with window width d, (t) where
the choice of k governs the smoothing.
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1-D estimate to n-dimensional estimate

» KDEin 1-D

1=
~
—
=
= |
=<
~—

n 1
f(x)=%

Becomes in n-D:

fo =13 kfE - )
i=1

where f K(X)dx = 1 for a d-dimensional space and h¢ is the smoothing parameter

for each por’nculor dimension. h* can also be given by a smoothing matrix e.g. the
covariance matrix if it is representative of the underlying distribution.

» The choice of kernel only has a minor effect (slightly different efficiencies), and

fhus a gaussian kernel (most common) will be used to refain the differentiability
of £(%). The gaussian kernel is given by:

1
K(x) = (2m)~%2exp(— EJ'ETJ'E)



1-D estimate to n-dimensional estimate

» KNNin 1-D
k—1

f® =50

Becomes in n-D (from Francois):
k kF(% + 1)

d d
nica Ry nm2RY

fx) =

where d(t) is now the Euclidean distance R; = ||% — x| = V(& — x)T (% — X)),
K4 IS the volume of a unit d-ball (in 1-D it is equal to two), F(g + 1) is Euler’s

gamma function, while k and (k-1) differ due to countfing conventions of
whether the test point is included.
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f(t) as an estimator of f.

Choice of smoothing parameter

» The Mean Infegrated Squared Error (MISE) can describe the accuracy of

= MISE(F) = E [{f00) — () dx = J{EFGO) — f()Y2dx + [ Var(F(x))dx

» MISE(f) i [Bias (f(x))z -+ Var(f(x))] dx

— Truth
— Small r
— Large r

MISE

]31‘|_-.[p[:},;|]2 Var [p(x)]

T r* r

Figure 7.1: (Left) Illustration of the effect of the smoothing radius, r, on the
behaviour of nonparametric density estimators. (Right) Schematic of the evolution of
the bias, variance and MISE as a function of the smoothing radius, r.

» AS f(x) = ?=1f(x)~r£d, the optimal choice of k is determined by a trade-off
between the variance and the squared bias.

For small r the estimate follows the
data closely as its not biased but has @
very large variance due to fluctuations.

For large r the estimate varies little as it
is less sensitive to fluctuations, but
becomes more biased.



Bias and Variance

» [For KNN:

2 2

2(kaf (1))3 "
Var[f(x)] ~ f ]Ex)

With u, (w) the second moment of the uniform kernel and V2f(x) the Laplacian
of the density field. The MISE is of order:

MISE(k) = 0O (—) + —
n k

Which admits a minimum for a parameter k of order:
k~n_4/(4+d)

The optimal rate of convergence for a KNN estimator is then:
MISE (k) = O(n~*/(*d)




Bias and Variance

» [or KDE (with second-order kernels):
L1 R N
Bias,(X) = Ehzvzf(x)ftlzl((t)dt
Var[f (0] ~ n-Th=4f (%) f K () dt
The MISE is then approximated by
2
1 — - - -
Zh‘L { j tlzK(t)dt} f {(V2f(X)}2dx + n~1h™4 f K () df

The optimal window width to minimize MISE is given by
=2 -1
Rt = d j K(f)zdf{ j tlzK(E)df} { j (v2 f(f)}zdf} ot

MISE (h) = O(n~%/“+d)

This is same as for KNN, that is the rate of convergence to the density estimate is
the same for KNN and KDE. The rate of convergence for the histogram is given by

MISE(A) = 0(n~%/(+2)

Therefore
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Probability
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Change in Sample Size — Toy Scenario

» See effect of change in sample size, as
sample size increases, should approach
underlying density of sample

» Random 4-D distribution with mean =0,
Standard Deviation = diag(1,1,1,1)

Blue: n =1000, k = 31

Red: n = 2000, k = 44
Green: n = 3000, k = 54
Magenta: n = 4000, k = 63
Cyan: n = 5000, k =70

» Underlying sample density is
approached as sample size increases,
optimal k adjusts to reflect increase in
sample size

-0.005 0.000 0.005 0.010 0.015 0.020 0.025 0.030



Change in sample size,
same k — Toy Scenario

MISE

Biwsp@f Var [5()]
r* r
200
» Changing sample size but keeping k constant
175 increases MISE, as a suboptimal k is chosen
150 » D-dimensional radius for a test point
increases/decreases as the test point needs
125 to find more/less neighbours. This can give an
apparent decrease/increase in the phase
100 space density. As the sample size is increased,
the phase space density becomes less
s susceptible to small changes in optimal k
Blue: n =1000, k = 54
50

Red: n =2000, k = 54
25 Green: n = 3000, k = 54
Magenta: n = 4000, k = 54
0.00 0.01 0.02 0.03 0.04 Cyan: n = 5000, k = 54



MISE

Change in k, same
sample size — Toy scenario

Bap@f Var [p(z)]
* T
140 "
» Choosing a suboptimal k leads to an increase
» When comparing data samples, one needs
100 to use the same conditions for the sample i.e.
use the same k to n relation e.g. k~n=4/4+a)
80 » A MISE that may not have been minimized
may be desirable in areas that have been
60 over or under smoothed
40 Blue: n =3000, k = 31
Red: n = 3000, k = 44
20

Green: n = 3000, k =54

0 Magenta: n = 3000, k = 63
0.00 0.01 0.02 0.03 0.04 0.05 0.06 Cyan: n = 3000, k = 70



Missing Data - Toy Scenario
Scraping and Transmission Losses

» | eft — Expected Density for a Gaussian sample in each
dimension normalized to the maximum density. As the
dimension increases, particles more likely be found at a
low phase space density

f_l(p/pmax)

Toy example (next slides):

» 4D Gaussian sample — Mean = 0, Standard Deviation =
diag(1,1,1,1)

Full sample — No cuts — Blue

0 0.2 0.4 0.6 0.8 1

/ max
ore Cut at +/- 2 sigma in one dimension called ‘X' —red

Cut at +/- 1 sigma in one dimension called ‘X’ — green
Cut at +/- 2 sigma in each dimension — magenta

Cut at +/- 1 sigma in each dimension — cyan




Probability

X Distribution Full SOmple —No cuts - Y Distribution
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Left - original sample —red line shows k-nearest neighbour for point at centre of
yellow circle

Middle - subsample from original — red line distance only has slight change, k adjusts
according to n. As n becomes small the error increases

Right — Aperture cut by the green sub-circle — points at large radius are removed.
While n has reduced, the k is now ideal for the subsample distribution.

For points with a bounding circle affected by the aperture cut, the k-nearest
neighbour may be further away, while for points at the centre of the sample the
nearest neighbour is closer as the k is reduced, but no close points are removed
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Phase Space Density Evolution

Liouville: Phase Space Density doesn’t change

When look at phase space density of a selection of parficles through the
cooling channel when no absorber is present it remains constant bar for small
changes due to the absorber windows

The upstream sections of the wedge and no wedge case are not
comparable as the selection has been biased by the wedge

The wedge shows an increase in the phase space density for many particles. It
also contains a significant number of particles that haven't gone through the
wedge

When look at full sample of particles at each station, there is a clear change
between the upstream and downstream section as the particle distributions
have changed in a non-random way



Conclusion

KDE is not a poor estimator, for second-order kernels it has the same rate of
convergence as for KNN

The density calculated is driven by the particle selection
The density is only conserved for that selection

MICE has significant fransmission losses. When comparing the Upstream and
Downstream sections these transmission losses as well as scraping or
scattering need to be accounted for as they bias the density calculation

Without accounting for this, the absorber and no absorber cases can't be
compared

When looking at the density of a particle selection through the cooling
channel, it remains conserved for the no absorber case, and shows
significant changes when the wedge is present



The End




