

Content

- PID ML method in field-off data
 - Approach
 - Features (explanatory variables)
 - KL
 - Linear Classifiers
- Data reconstructed with MAUS 3.3.2
 - Track discrepancy
 - Scattering distribution

MICE

Selection

TOF1 SP	US Track	TOF	Tracking region	Fiducial Selection	Diffuser cut
Requiring a TOF0& TOF1 hit	one US track	±150ps around muon peak	Tracks associated with events appearing at > 150mm in trackers are removed	R<100mm at DS ref plane	R<90mm

11/09/2019

PID approach

Pionic beam

- π , e present in muon TOF peak
- Contamination increases with momentum
- MC shows some protons, photons
- MC contains significantly less electrons

PID approach

Plan

- Extract discriminators
 - E-loss in KL,EMR,TOFs
 - Ckov NPE
- Choose the simplest method
- Find possible limitations
- move to a more fitting method

^{*}methods are mixed and functionalities have been inherited from previous algorithms, or borrowed from neighbouring methods.

MICE

Generic Linear Classifier

$$S^{ij} = F_k^{ij} \cdot w^k$$

i: event

j: PID

k: feature

Feature vector: (input)

$$F^{ij} = \left(\frac{\mathrm{d}E^{ij}}{\mathrm{d}x} \frac{1}{E_0^{ij}}\right)_{EMR} + \left(\frac{\mathrm{d}E^{ij}}{\mathrm{d}x} \frac{1}{E_0^{ij}}\right)_{KL} + \left(\frac{\mathrm{d}E^{ij}}{\mathrm{d}x} \frac{1}{E_0^{ij}}\right)_{TOFS} + X_{Ckov}$$

Weight vector (training derived)

$$\mathbf{w}^{\mathbf{k}} = w_{EMR} + w_{KL} + w_{TOF} + w_{Ckov}$$

- The feature vector is k dimensional (k number of discriminating variables available)
- The weight vector is determined from training, where the PID is known, and the **w** elements are tuned to maximise discrimination.
- A score (S) is formed for each event for each hypothesized PID
- Highest score wins
- Subclass of linear classification is chosen based on requirements.

Energy loss

- Electronic energy loss (Bethe equation) predicts E-loss for muons/pions
- Bremsstrahlung dominates electronic E-loss for electrons
- Should work as discriminating quantity

WICE TO THE PARTY OF THE PARTY

KLOE-light sampling calorimeter

- Pb/Sci 1:1 volume ratio
- 7 modules, 3 cells each.
- 2 PMTs per cell.
- Dimensions: $120(x) \times 160(y) \times 4(z)$ cm
- $X_0 = 9.904 \text{ gcm}^{-2} \text{ or } 1.6 \text{ cm}$

KL response to selected beam, MC/data

11/09/2019

Tracker check in new version 3.3.2

Projection residuals US-DS

11/09/2019

Old version 3.2.0

Change in Projected Angle (Y)

Projection residuals US-DS

Change in Projected Angle (X)

