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Signals in particle detectors

12/2/19

Lecture 2: 

Signals in 

- Ionization chambers

- Liquid argon calorimeters

- Diamond detectors

- Silicon detectors

- GEMs (Gas Electron Multiplier) 

- Micromegas (Micromesh gas detector) 

- APDs (Avalanche Photo Diodes)

- LGADs (Low Gain Avalanche Diodes)

- SiPMs (Silicon Photo Multipliers) 

- Strip detectors

- Pixel detectors

- Wire Chambers 

- Liquid Argon TPCs 

Lecture 3:

- Media with conductivity

- Quasi-static approximations

- Signal theorem extensions

- Time dependent weighting fields 

- Resistive plate chambers (RPCs) 

- Un-depleted silicon sensors 

- Monolithic pixel sensors

Lecture 4:

- Signal propagation

- Transmission lines 

- Termination 

- Linear signal processing 

- Noise 

- Optimum filters

Lecture 5:

- Possible overflow, wrap-up and Q&A session 

Main Auditorium, Mon. 2 Dec. Council Chamber, Tue. 3 Dec. TH conference room (4/3-006), Wed. 4 Dec.

Main Auditorium, Fri. 6 Dec.

Filtration Plant (222/R-001), Thu. 5.Dec.

Lecture 1:

- Electrostatics

- Principles

- Reciprocity

- Induced currents

- Induced voltages

- Ramo-Shockley theorem

- Mean value theorem

- Capacitance matrix

- Equivalent circuits
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Extensions of the Ramo-Shockley theorem

In the first two lectures we assumed that 

- the electrodes are perfectly conducting electrodes 

- the electrodes are grounded (measuring induced current) or insulated (measuring induced voltage)

- the detector materials are perfect insulators

In a realistic detector, the electrodes are however neither grounded nor insulated, but they are connected to 

ground and among each other by impedance elements e.g. amplifiers, load resistors etc. 

In addition the detector materials can have finite conductivity, like it is the case in Resistive Plate Chambers 

(RPCs), un-depleted silicon sensors,  and detectors with resistive layers for application of High Voltage, 

spreading of charge or discharge protection.

For these situations we have to extend the Ramo-Schockley theorem.
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Electrostatic in dielectric media

x

y
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V0

V3

⍴(x) 

V1=Vw V2=0

V3=0

𝜓1(x) 

V2=VwV1=0

V3=0

𝜓2(x) 

V3=Vw

V2=0
V1=0

𝜓3(x) 

V1=0 V2=0

V3=0

𝜓0(x) 

V0 =0 V0 =0

V0 =0 V0 =Vw

V3=0

V2=0V1=0

𝝋0(x) 

V0 =0

𝝋(x) 

⍴(x) 

A solution that satisfies the boundary conditions (and is therefore unique):

ε(x) ε(x)

ε(x)

ε(x) ε(x)

ε(x)

Ramo-Shockley theorem 

holds also for dielectric 

media !
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Conductivity, volume resistivity

Volume resistivity 𝜌 [Ωm] – typically expressed as Ωcm

Conductivity 𝜎 =1/𝜌 [Siemens]

Nonuniform conductivity (volume resistivity) relates the 

local current density to the local electric field:

R1

L
A

Surface resistivity R [Ω/square]
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Quasi-static Approximation

In a medium with conductivity sigma there will be a current flowing according to 

In addition to this current we can have and externally impressed current je(x, t), so the total current is

Assuming the variation of the electric field to be slow, we can use the Poisson equation for a medium given by

Performing the time derivative we have

And using

we have

Where ⍴e is the ‘externally impressed’ charge density.

E
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Quasi-static Approximation of Maxwell’s equations

Assuming a conductivity sigma of the material we have a current according to

Maxwell’s equations for this situation

The current je(x, t) is an ‘externally impressed’ current, which is related to the ’externally impressed’ charge density ⍴e by

If we assume that this impressed current is only changing slowly we can neglect Faraday’s law and approximate

and we can then write the electric field as the gradient of a potential, an by taking the divergence of the last equation …

 the same equation as on the previous slide
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Laplace Transform, Fourier Transform

Bilateral Laplace Transform

Fourier Transform

Inverse Laplace and Fourier Transforms

Relations that hold for Laplace and Fourier Transforms
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Performing the Laplace Transform of the quasi-static equation

we find

So we can write this equation as

This is the Poisson equation with an effective permittivity !! 

 We can therefore find the time dependent solutions for a medium with a given conductivity by solving the 

electrostatic Poisson equation in the Laplace domain !

 Knowing the electrostatic solution for a given permittivity ε(x) we just have to replace ε(x) by ε(x)+σ(x)/s and 

perform the inverse Laplace transform !
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Quasi-static Approximation of Maxwell’s equations
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Many examples 
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A point charge Q at x=0 inside a medium of constant permittivity ε

A point charge Q placed at x=0 into a medium of constant permittivity ε and 

constant conductivity σ

At t=0 when the charge is placed at x=0, the potential is equal to the static 

potential in absence of conductivity, for long times the potential is zero. 

The time dependent potential is:
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Point charge Q in a uniform conducting medium

Q
x

y

ε

E

Q
x

y

ε

j= σE

ε, σ



12/4/19 13Signals in Particle Detectors, W. Riegler/CERN

The charge density is given by 

In the time domain we have  

The situation therefore corresponds to a and exponentially decaying point charge at 

x=0. The radial current are given by  

The total current flowing through the surface of a sphere of radius r is

In the time domain this reads as

Integrating this current over time gives

This reflects the fact that the entire charge that was place at x=0 at t=0 disappears.

Q
x

y

ε

j= σE

ε, σ

Q
x

y

ε

I(t)

ε, σ

r

Point charge Q in a uniform conducting medium
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Placing a constant current I0 at x=0 at t=0 we have the charge

and the potential is then 

For long times we then have

So the potential is equal to having a point charge I0𝜏 at x=0. The time dependent potential is 

I0

x

y

ε

E

Point ‘current’ I0 in a uniform conducting medium
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Point charge Q at x=0 on the boundary between two infinite half-spaces of different 

permittivity

Placing a point charge Q placed at t=0 at x=0 on the boundary between two hal-

spaces of different permittivity and conductivity, Laplace domain

Time domain

The current flowing through a half-spheres in the two layers are given by

Q
x

y

ε1

E

ε2

Q
x

y

ε1, σ1

E

ε2, σ2

I1(t)

I2(t)

Point charge Q on the boundary of two media
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Thin layer of charge on the boundary of two media

An infinite thin layer of charge at z=0 with charge density q [C/cm2] on the boundary 

of two infinite dielectric half-spaces 

Placing the charge density q at t=0 with the two infinite half-spaces having a 

conductivities σ1 and σ2

The time dependent charge on the interface is

In case the half-space z<0 has conductivity σ and the half-space z>0 is insulating the 

time constant is

x

y

ε1

ε2
E

E

q

x

y

E

E

q

ε1, σ1

ε2, σ2
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Point charge Q in presence of a conducting half-space

Point charge Q at position 0,0,a in a geometry with two infinite half-spaces of different 

dielectric permittivities

Point charge Q at position 0, 0, a in a geometry with an infinite half-space of conductivity 

sigma. Replace ε2 by ε0, ε1 by ε0 + σ/s and Q by Q/s

At t=0 the field is equal to a single point charge Q at 0,0,a. At t=infinite there is a point 

charge Q at 0,0,a and a mirror charge at 0,0,-a. 

Q

x

y

ε1

ε2a

Q

x

y

aε0

ε0, σ
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Layer of charge on the boundary between two dielectric layers and two 

grounded plates at z=-b and z=g.

Replace ε1 by ε0εr +σ/s, ε2 by ε0 and q by q/s

In case b=g the time constant becomes equal to the case of two infinite 

half-spaces.
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Quasi-static Approximation of Maxwell’s equations

z=g

z=-b

z=0

ε1

ε2

E1

E2
q

z=g

z=-b

z=0

ε0

E1

E2
q

ε0εr , σ
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Quasi-static Approximation of Maxwell’s equations

Point charge on the boundary of two dielectric media with grounded planes at 

z=-b and z=g

Assuming layer 1 to have conductivity σ we have

z=g

z=-b

z=0
ε2

ε1ɸ1

Q
ɸ2

x

y

z=g

z=-b

z=0
ε0 

ε0εr , σɸ1

Q
ɸ2

x

y
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Quasi-static Approximation of Maxwell’s equations

z=g

z=-b

z=0
ε0 

ε0εr , σɸ1

Q
ɸ2

x

y

The charge disappears with a continuous distribution of time constants of 𝜏1 and 𝜏1.

This situation would correspond to a charge deposit in a resistive plate chamber. 
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Point current on a resistive layers
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Point charge on an infinitely extended resistive layer

A point charge Q is placed on an infinitely extended resistive layer at r=0, t=0. The potential for 

z>0 and z<0 is given by

The potential is equivalent to a point charge Q moving along the z-axis at a velocity v

The charge distribution on the resistive layer as a function of time is

At no time this charge distribution assumes a Gaussian shape.                                                                
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A resistive layer in presence of a grounded layer. A point charge is 

placed on the layer at r=0, t=0

For long times we can make the approximation

And the charge distribution becomes

The charge distribution does indeed assume Gaussian shape …
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Point charge on an infinitely extended resistive layer
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Capacitance, Impedance

A constant voltage applied to a capacitor with homogeneous dielectric permittivity

A time dependent voltage applied to a capacitor with conductive material

z=d

z=0

ε

V0

z=d

z=0

ε, σ

V(s)

Q2

Q1

I2(s)

I(s)V(s) Q2(s)

Q1(s)

R
C

V0
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Quasi-static Approximation of Maxwell’s equations

A constant voltage applied to a geometry with two insulating layers

A time dependent voltage applied to a geometry with an insulating and 

a conductive layer

z=g

z=-b

z=0

z=g

z=-b

z=0

ε0

ε0εr , σ

V(s)

V0

ε1

ε2

V(s)

I(s)

Q2

Q1

Q2(s)

Q1(s)

E1

E2

V(s)

R
C1

C2

C2

C1
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Capacitance matrix for insulating media

Q1

Q2

Q3

y

Q0

V1

V2

V3

V0

x

y

N+1 metal electrodes at potentials Vn will result in charges 
Qn on the electrodes.

Using the weighting potential for each electrode 

we can construct the solution to the problem

Inserting this in the above relation results in 

This defines the capacitance matrix of the system

ε(x)



12/4/19 27

Admittance matrix for conductive media

Qext
1(s)

y

V1(s)
V2(s)

V3(s)

x

y

N+1 metal electrodes at potentials Vn will result in charges 
Qn on the electrodes.

Using the weighting potential for each electrode 

we can construct the solution to the problem

Inserting this in the above relation results in 

This defines the ‘admittance’  matrix of the system:

ε(x, s)

σ(x, s)

Qext
2(s)

Qext
3(s)

Qext
0(s)

V0(s)
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y

V1(s)
V2(s)

V3(s)

V0(s)

x

y

ε(x, s)

σ(x, s)

iext
0(s)

iext
1(s) iext

2(s)

iext
3(s)

Impedance Matrix

As in the case of the capacitance matrix we define one electrode as 
the reference electrode in order to have a unique relation between 
currents and voltages 

The matrix ymn the Admittance Matrix of the system 

The matrix zmn is the Impedance Matrix of the system 
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The impedance elements of the equivalent circuit are defined by

Using the fact that the sum of these current at each node is zero

we can relate the impedance elements Zmn to the Admittance Matrix ymn
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y

V1(s)
V2(s)

V3(s)

x

y

ε(x, s)

σ(x, s)

iext
1(s) iext

2(s)

iext
3(s)

Equivalent circuit, Impedance elements

Z11(s)

Z33(s)

Z22(s)

Z12(s)

Z13(s) Z23(s)

U1(s)

iext
1(s) iext

2(s)

U2(s)

U3(s)

iext
3(s)

i12(s) i21(s)

i11(s)
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Impedance elements

The weighting field of electrode 1

Using the general formula for the impedance matrix

we have

z=g

z=-b

z=0

z=g

z=-b

z=0

ε0

ε0εr , σ

V(s)

V0

ε1

ε2

V(s)

I(s)

1

0

E1

E2

R
C1

C2
1

0
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Weighting fields

Qext
1(s)

y

V1(s)
V2(s)

V3(s)

x

y

The weighting potentials in the Laplace domain are due to 
application of Vw to the electrode in question and grounding all the 
others. 

In the time domain this refers to a delta function Vw δ(t) applied to the 
electrode in question.

ε(x, s)

σ(x, s)

Qext
2(s)

Qext
3(s)

Qext
0(s)

V0(s)

y

Vw

V2=0

V3=0

x

y

ε(x, s)

σ(x, s)

V0=0
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Extension of the Ramo Shockley theorem
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Qind
1

Qind
2

Qind
3

x

y

Qind
0

q
V1=0

V2=0

V3=0

V0=0

Theorem, induced charge

The charge induced on a grounded conducting electrode 

by a point charge q at position x can be calculated the 

following way: 

Remove the point charge, put the electrode in question to 

potential Vw while keeping all other electrodes at ground 

potential.

This defines the potential 𝜓n(x) and the induced charge is

x

y

Qind
0

V1=Vw

V2=0

V3=0

V0=0

𝜓1(x) 
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Qind
1

Qind
2

Qind
3

x

y

Qind
0

q(s)
V1=0

V2=0

V3=0

V0=0

Theorem, induced charge

The charge induced on a grounded conducting electrode by a point 

charge q(s) at position x can be calculated the following way: 

Remove the point charge, apply a voltage  Vw(s) to the electrode in 

question while keeping all other electrodes at ground potential 

x

y

Qind
0

V1=Vw(s)

V2=0

V3=0

V0=0

𝜓1(x, s) 

ε(x, s)

σ(x, s)

ε(x, s)

σ(x, s)

x

y

Qind
0

V1=Vw(t)

V2=0

V3=0

V0=0

𝜓1(x, t) 

ε(x, s)

σ(x, s)

Note that this charge does not refer 

to the charge that is sitting on the 

electrode but to the charge that is 

brought into the system i.e. the 

charge that has moved between 

ground an the electrode.

That’s exactly that charge one 

measures if one connects an 

amplifier to the electrode.
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Qind
1(t)

Qind
2(t)

Qind
3(t)

x

y

Qind
0

V1=0

V2=0

V3=0

V0=0

Theorem, induced charge

In case we have a time varying external charge density in between 

the electrodes we have 

In case we chose to apply a delta function for finding the weighting 

field we have 

If there is a charge moving along a trajectory x1(t) the charge density 

amounts to  

And the induced charge is 

Note that 𝜓n is not a physical potential, since the delta function gives 

it a dimension of V/s. 
x

y

Qind
0

V1=Vwẟ(t)

V2=0

V3=0

V0=0

𝜓1(x, t) 

ε(x, s)

σ(x, s)

ε(x, s)

σ(x, s)

𝜌e(x, t)
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Theorem, induced current

Applying the delta voltage pulse to the electrode in question we find the 

potential 𝜓n(x, t) and the field En(x, t) from which the induced current can be 

calculated the following way:

 Ramo-Shockley theorem extension for conducting media

Note that En is not physical potential, since the delta function gives it a 

dimension of V/cm s. 

In case the material is an insulator there is no time dependence of the weighting 

field and we recuperate Ramo’s theorem.

x

y

Qind
0

V1(t)=Vwẟ(t)

V2=0

V3=0

V0=0

𝜓1(x, t), E1(x, t) 

ε(x, s)

σ(x, s)

Qind
1

Qind
2

Qind
3

x

y

Qind
0

q

V0=0

x(t)

I2(t)

I3(t)

I1(t)

I0(t)

qε(x, s)

σ(x, s)
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r6  =1/  1012cm

2mm Aluminum

3mm Glass

300m Gas Gap

Amplifier

Rin

HV

RPC Silicon Detector

Vdep

Undepleted Zone,  =1/  5x103cm

Depleted Zone

Rin

  0 /   100msec   0 /   1ns

heavily irradiated silicon has larger resistivity 

that can give time constants of a few hundreds of ns 

Example
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Weighting Field of Electrode 1

Weighting Field of Electrode 2

a = r 0 + /s

b = 0

a = r 0 + /s

b = 0

Example
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At t=0 a pair of charges q, -q is created at z=d2. 

One charge is moving with velocity v to z=0

Until it hits the resistive layer at T=d2/v.

Example
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In case of high resistivity (>>T, RPCs, 

irradiated silicon)  the layer is an insulator.

In case of very low resistivity ( <<T, silicon) the 

layer acts like a metal plate and the scenario 

is equal to a parallel plate geometry with plate 

separation d2. 

The total induced charge is always equal to q !

Example
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Strip Example  

3 = 0

2 = 0+/s

1 = 0

What is the effect of a conductive layer between the 

readout strips and the place where a charge is moving ?
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Strip Example  

3 = 0

2 = 0+/s

1 = 0

V0

Electrostatic Weighting field (derived from B. Schnizer et. al, CERN-OPEN-2001-074):

Replace 1  0, 2  0+/s, 3  0 and perform inverse Laplace Transform

 Ez(x,z,t). Evaluation with MATHEMATICA:
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Strip Example  
T<<
T=
T=10
T=50
T=500

I1(t)                                       I3(t)                                         I5(t)

 = 0/

The conductive layer ‘spreads’ the signals across the strips.
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Q -Q

Charge spreading

In some detectors, a resistive layer is applied on top of the 

readout strips to spread out the charge and therefore 

‘increase’ the pad response function.

This example shows a resistive ‘bulk’ layer on top of the 

readout strips. The layer is in contact with the strips, so 

charge can move from the strips into the resistive layer.

• The solid blue line shows the situation for the given 

time constant.

• The dashed blue line shows the situation for zero 

conductivity

• The dashed magenta line shows the situation for infinite 

conductivity

𝝉0=10T

𝝉0=T

𝝉0=0.1T
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Charge spreading

In some detectors, a resistive layer is applied on top of the 

readout strips to spread out the charge and therefore 

‘increase’ the pad response function.

This example shows a thin resistive layer on top of the 

readout strips. The layer is insulated from the strips.

• The solid line shows the situation for different time 

constants

• The dashed line shows the situation for infinite resistivity

Q -Q

T0=10T

T0=T

T0=0.1T

T0=0.01T

T0=0.001T
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Induced voltage, equivalent circuit
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Vind
1

Vind
2

Vind
3

x

y

Vind
0

q

Q1=0

Q2=0

Q3=0

Q0=0

Theorem, induced voltage, static

The voltage induced on an uncharged and insulated 

conducting electrode by a point charge q at position x can 

be calculated the following way: 

Remove the point charge, put a charge Qw on the 

electrode in question while keeping all other electrodes 

insulated and uncharged.

This defines the potential 𝝌n(x) and the induced voltage is

x

y

Qind
0

Q1=Qw

Q2=0

Q3=0 Q0=0

𝝌1(x) 

x(t)

q
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Theorem, induced voltage, dynamic

Applying the delta voltage pulse to the electrode in question we find the potential 

𝜓n(x, t) and the field En(x, t) from which the induced current can be calculated the 

following way:

Since the admittance matrix relates currents and voltages on the electrodes in 

absence of charge, the admittance matrix relates the weighting fields En and Kn

and therefore related the currents induced on grounded electrodes and the 

voltages induced on insulated electrodes.

This means in turn that we can first calculate the current induced on grounded 

electrodes and then place these currents as ideal current sources on the 

equivalent circuit of the medium.

x

y
Q1(t)=Qwẟ(t)

𝝌1(x, t), K1(x, t) 

ε(x, s)

σ(x, s)

Vind
1(t)

x

y q

x(t)
qε(x, s)

σ(x, s)

Vind
2(t)

Vind
2(t)
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Qind
1

Qind
2

Qind
3

q

x(t)

Iind
2(t)

Iind
3(t)

Iind
1(t)

Iind
0(t)

qε(x, s)

σ(x, s)
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In case the electrodes are not insulated 

but  connected with discrete linear 

impedance components we can consider 

them as part of the medium and we 

therefore just have to add these 

elements in the equivalent circuit. 
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Nonlinear media
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Static electric field in a biased silicon sensor

Metal electrodes embedded in a medium with

• Static space-charge ρ0(x)

• Position and frequency dependent permittivity ε(x, s)

• Position and frequency dependent conductivity σ(x, s) = 1/ρ(x,s)                             
(ρ … volume resistivity)

• Connection of the electrodes with discrete impedance elements zmn(s)

• Nonlinear material i.e. ρ0(x), ε(x, s), σ(x, s) can depend on the voltages Vn

applied to the electrodes.

 Silicon sensor !Laplace parameter s=iω
ω … frequency
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Induce voltage
This weighting field is defined by placing a ‘step 
charge’ or ‘delta current’ on the electrode in 
question and calculating the resulting electric 
field.

This theorem is very well suited for calculation of 
signals with TCAD simulation programs. 

One can add the entire discrete circuitry like 
biasing network, amplifier etc. to the TCAD 
model and directly find the voltages induced on 
the nodes.

In TCAD one can e.g. use a triangular current 
pulse with duration T and peak value Ip and then 
use Q0 = Ip x T/2, where T must be chosen much 
smaller than the reaction time of the medium.

In general any current I(t) with Q0 = ∫I(t)dt can be 
used, as long as the duration is much smaller 
than the reaction time of the medium.

t

I(t)

T

Ip
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Induce charge on 
grounded electrodes

This weighting field is defined by placing a 
step voltage on the electrode in question and 
calculating the resulting electric field.

This theorem is well suited for calculation of 
signals with TCAD simulation programs when 
the input impedance of the amplifier that 
connects to the electrode is negligible with 
respect to the other impedances in the circuit. 

In that case In(t)=-dQn(t)/dt directly gives the 
input current to the amplifier.
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Induced Current on 
grounded electrodes

The induced current can also be calculated by a ‘weighting 
field’ or ‘weighting vector’ Wn that is causes by a small 
voltage pulse on the electrode in question. 

W(x, t) has units of V/cm*s and therefore does not 
represent an electric field. 

Using this weighting vector the induced current can be 
calculated directly.

This weighting vector will always have a ‘prompt’ 
component that follows the short pulse and a ‘delayed’ 
component that includes the reaction of the medium. 

When using this weighting field for numerical simulations it 
is useful to use these two components separately to avoid 
numerical issues. 

T
t

V(t) Ip
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Induced Currents and Voltages

The charges Qind
n(t) and current Iind

n(t) = -
dQn(t)/dt are related to the voltages Vind

n(t) 
induced on the electrodes that are connected by 
the discrete impedance elements zmn(s) throught
the admittance matrix ymn(s).

Let us assume we have calculated the weighting 
field H(x, t) or the weighting vector W(x, t) for 
the induced charge or the induced current, for 
the case where the other electrodes are held at 
fixed potentials i.e. the interconnecting 
impedance elements zmn(s) do not play a role.

We perform the Laplace transform and have 
Hn(x, s) and Wn(x, s).

We define the admittance matrix ymn(s) by 
integrating these weighting fields over the 
electrode surfaces.
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Equivalent Circuit

The electrodes and the medium can be represented by nodes that are connected by impedance elements. 

The induced voltage signals for the case where the electrodes are connected by arbitrary impedance elements can then be 
calculated by the induced currents on grounded electrodes together with the equivalent circuit diagram.

In case the medium has no conductivity, i.e. σ=0, these impedance elements are Znm=1/sCnm with Cnm being the mutual 
electrode capacitances.

This second method for calculating the induced voltages has the advantage that one calculates the currents Iind
n(t) and the 

impedance elements Zmn(s) once and can then perform all further calculations for different readout and biasing circuits in a 
separate SPICE simulation.


