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Main Auditorium, Mon. 2 Dec.

Signals In particle detectors

Council Chamber, Tue. 3 Dec.

TH conference room (4/3-006), Wed. 4 Dec.

Filtration Plant (222/R-001), Thu. 5.Dec.

Lecture 1:

- Electrostatics

- Principles

- Reciprocity

- Induced currents

- Induced voltages

- Ramo-Shockley theorem
- Mean value theorem

- Capacitance matrix

- Equivalent circuits

12/2/19

Lecture 2:

Signals in

lonization chambers

Liquid argon calorimeters
Diamond detectors

Silicon detectors

GEMS (Gas Electron Multiplier)
Micromegas (Micromesh gas detector)
APDS (Avalanche Photo Diodes)
LGADS (Low Gain Avalanche Diodes)
SiPMSs (silicon Photo Multipliers)
Strip detectors

Pixel detectors

Wire Chambers

Liquid Argon TPCs

Lecture 3:

Media with conductivity

- Quasi-static approximations

- Signal theorem extensions

- Time dependent weighting fields
- Resistive plate chambers (RPCs)
- Un-depleted silicon sensors

- Monolithic pixel sensors

Lecture 4:

- Signal propagation

- Transmission lines

- Termination

- Linear signal processing
- Noise

- Optimum filters

Main Auditorium, Fri. 6 Dec.

Lecture 5:

- Possible overflow, wrap-up and Q&A session
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Extensions of the Ramo-Shockley theorem

In the first two lectures we assumed that

- the electrodes are perfectly conducting electrodes

- the electrodes are grounded (measuring induced current) or insulated (measuring induced voltage)
- the detector materials are perfect insulators

In a realistic detector, the electrodes are however neither grounded nor insulated, but they are connected to
ground and among each other by impedance elements e.g. amplifiers, load resistors etc.

In addition the detector materials can have finite conductivity, like it is the case in Resistive Plate Chambers
(RPCs), un-depleted silicon sensors, and detectors with resistive layers for application of High Voltage,
spreading of charge or discharge protection.

For these situations we have to extend the Ramo-Schockley theorem.

Signals in Particle Detectors, W. Riegler/CERN



Electrostatic in dielectric media

[
>

V) Vo) = —p(x)  o(X)lx=a, =Va
A solution that satisfies the boundary conditions (and is therefore unique):
V [e(x) Voo (x)] = —po(x) ©(x)|x=a, =0

Q, = % e(x)E(x)dA Ramo-Shockley theorem
VeV, (x)] =0  n(X)|xena, = Vibmn ! holds also for dielectric
T media !
N Vi, Cmn = _% vwm
p(x Z V_
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Conductivity, volume resistivity

Volume resistivity p [Qm] — typically expressed as Qcm Surface resistivity R [Q/square]
Conductivity o =1/p [Siemens]

A
\ 4

R,

—i —i

L U a

Rlzpz I:R—l RlZR_

Nonuniform conductivity (volume resistivity) relates the
local current density to the local electric field:

J(x) = o(x)E(x) = —0(x)V(x)

12/4/19 Signals in Particle Detectors, W. Riegler/CERN



Quasi-static Approximation

In a medium with conductivity sigma there will be a current flowing according to
J(xt) = o(x)E(x,t) = —0(x)Ve(x)
In addition to this current we can have and externally impressed current j (X, t), so the total current is
J(x,t) = oc(X)E(x,t) + je(x,t) = —0(X)Vp(x,t) + je(x,1)
Assuming the variation of the electric field to be slow, we can use the Poisson equation for a medium given by
VIe(x)Ve(x,1)] = —p(x,1)

Performing the time derivative we have

Dol 1) Dp(x. 1) Je(x,1)
pixX, 1), OpX,
Vie(x)V 5 | = oy
And using Op(x. 1)

) __Op X,
we have

dp(x,t) _ Ope(x,t)
V |e(x)V 5 +o(x)Ve(x,t)| = T

Where p, is the ‘externally impressed’ charge density.
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Quasi-static Approximation of Maxwell’s equations

Assuming a conductivity sigma of the material we have a current according to

J(x,t) = o(x)E(x,1)
Maxwell's equations for this situation

VD(x,t) = p(xt) D(x1)=c(x)Ex,1)
VB(x,t) = 0 B(x,t) = p(x)H(x,t)
0B(x,t)
E = -
V x E(x,t) Py
D
V x H(x,t) = J g:’t) +je(x,t) + o(x)E(x,1)
The current j (X, t) is an ‘externally impressed’ current, which is related to the 'externally impressed’ charge density p, by
) Ope(x,1)
e(X,t) = ———F—
Vie(x,1) Y
If we assume that this impressed current is only changing slowly we can neglect Faraday’s law and approximate
V x E(x,t) ~ 0 E(x,t) = —Vp(x,t)

and we can then write the electric field as the gradient of a potential, an by taking the divergence of the last equation ...

D
V(5 Hx, 1) = YO LG5 e 1)+ Vl(x0B( 1) = 0
0 t Ope(x,t . : :
V |le(x)V (X, 1) +o(x)Vep(x,t)| = _Opex1) - the same equation as on the previous slide

ot



12/4/19

Laplace Transform, Fourier Transform

Bilateral Laplace Transform

Fourier Transform

Z[f(0)] =

Fi)= [ rwea,

FUO)= [ f0)evd=Fio)  o=2xf.

o
—a

Inverse Laplace and Fourier Transforms

f(t)= zi /T:mp(s) e ds f() = L/:,F(iw) & dw.

Tt Jo—i

21

Relations that hold for Laplace and Fourier Transforms

(a) Addition
ZLlaf(t)+bg(t)|=aF(s)+bG(s)

(c) Time differentiation

& [f(") (x)} — §"F(s)

(e) Time shift
ZLf(t—1t0)] =F(s)e*

(b) Convolution (2) Damping

L[ ft—1")g(t')dr'] = F(s) G(s) L[ f(1)] = F (s +50)

(d) Time integration (i) Initial value if f(f) =0 fort <0
L[l f()dr'] =1F(s) £(0") = limsF(s)

(f) Time scaling (k) Parseval’s theorem

Zf(ar)] = zF (3)

[on f(0)%dr = [7, |F(i2nf)|*d f

Signals in Particle Detectors, W. Riegler/CERN

(h) Multiplication
L f(1)] = (—1)"F"(s)

(j) Final value
() = limsF (s)

=2 [y’ |F(i2nf)*df
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Quasi-static Approximation of Maxwell’s equations

Performing the Laplace Transform of the quasi-static equation

[1] H.A. Haus, J.R. Melcher, Electromagentic Fields and
Energy, Prentice-Hall, Englewood Cliffs, NJ, 1989.

op(x,t Ope(x,t
VvV E(X)Vi(p( ) +o(x)Vep(x,t)| = ——pe(—) H —
ot ot 7 Fi
we find e ResEARGH

ELSEVIER Nuclear Instruments and Methods in Physics Research A 478 (2002) 444447

V [e(x)Vsp(x,s) + o(x)Vp(x,s)] = —spe(x, s)

The quasi-static electromagnetic approximation
for weakly conducting media *

Th. Heubrandtner, B. Schnizer*

V[(e(x) + 0(x)/s)V(x, )] = —pe(x, 5)
So we can write this equation as

Vleer (V% 8)] = —pe(X,8)  2opp(X) = e(x) +o(x)/s  p(x.5) = ~VERVe(x.8)]  pe(x.5) = —V [eerr(x)Vp(x, 5)
This is the Poisson equation with an effective permittivity !!

- We can therefore find the time dependent solutions for a medium with a given conductivity by solving the
electrostatic Poisson equation in the Laplace domain !

- Knowing the electrostatic solution for a given permittivity €(x) we just have to replace €(x) by €(x)+o(x)/s and
perform the inverse Laplace transform !

Signals in Particle Detectors, W. Riegler/CERN
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Many examples ——

]inst PusLISHED BY IOP PUBLISHING FOR Si1ssa MEDIALAB

REeceIVED: February 26, 2016
AccertED: October 19, 2016
PuBLISHED: November 7, 2016

Electric fields, weighting fields, signals and charge
diffusion in detectors including resistive materials

W. Riegler

CERN EP,
CH-1211 Geneve 23, Switzerland

E-mail: werner.riegler@cern.ch

ABsTRrACT: In this report we discuss static and time dependent electric fields in detector geometries
with an arbitrary number of parallel layers of a given permittivity and weak conductivity. We derive
the Green’s functions i.e. the field of a point charge, as well as the weighting fields for readout
pads and readout strips in these geometries. The effect of ‘bulk’ resistivity on electric fields and
signals is investigated. The spreading of charge on thin resistive layers is also discussed in detail,
and the conditions for allowing the effect to be described by the diffusion equation is discussed. We
apply the results to derive fields and induced signals in Resistive Plate Chambers, MICROMEGAS
detectors including resistive layers for charge spreading and discharge protection as well as detectors
using resistive charge division readout like the MicroCAT detector. We also discuss in detail how
resistive layers affect signal shapes and increase crosstalk between readout electrodes.
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Point charge Q in a uniform conducting medium

A point charge Q at x=0 inside a medium of constant permittivity €

p(x) = Q4(x) ox) = 2L

= £ = gpe
dre |x| e

A point charge Q placed at x=0 into a medium of constant permittivity € and
constant conductivity o

pelx 1) = QU O()  pelxos) =L [pelx. )] = 2 3(x)

Q/s 1 Q 1 e £k

e+a/s |x| - (s +1/7) dmelx| T g

p(x,8) =

p(x,t=0) = lim sp(x,s) = « p(x,t = 00) = lim sp(x,s) =0

§—00 47T€|X| s—0

At t=0 when the charge is placed at x=0, the potential is equal to the static
potential in absence of conductivity, for long times the potential is zero.

The time dependent potential is:

Px.t) = L [plx,a)] = o e

Signals in Particle Detectors, W. Riegler/CERN
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Point charge Q in a uniform conducting medium

The charge density is given by

Qo (x)
s+1/1

p(x, S) = -V [E(X)V(,O(X, S)] - —EA(p(X, 3) -
In the time domain we have
p(x,t) = Q3(x)e /7

The situation therefore corresponds to a and exponentially decaying point charge at
x=0. The radial current are given by

e
T(s+1/7) Ar|x|

j(x,8) = 0E(x,5) = —oVp(x,s) = —

The total current flowing through the surface of a sphere of radius r is

1(8=T)=£()j(x,s)dA:jéfvjdvz_l Q At gyt Q

T(s+1/7) )y 4n|x]| T(s+1/7)

In the time domain this reads as

I(t,r) =L~ ' [I(s,1)] = ge_th

Integrating this current over time gives

Qiot = _/0 I(t,r)dt = ;1_1;% sgI(s, t)=Q

This reflects the fact that the entire charge that was place at x=0 at t=0 disappears.

12/4/19 Signals in Particle Detectors, W. Riegler/CERN



Point ‘current’ I, in a uniform conducting medium

Placing a constant current |, at x=0 at t=0 we have the charge

Qt)=1It  Q(s) =L[Q(t)] = Ip/s*
and the potential is then

L/s* 1 I I 1 1 1 € &
e+o/s anlx|  s(s+1/7)dmelx| 0 \s s+ 1/7) drelx] I

p(x,8) =

Q |
Q

For long times we then have

1
@(x,t = 00) lim sp(x,s) = IpT g

So the potential is equal to having a point charge I, at x=0. The time dependent potential is

o

= Iyr(1—e /7
p(x,t) = Lot(1—e )4W6|x|
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Point charge Q on the boundary of two media

Point charge Q at x=0 on the boundary between two infinite half-spaces of different
permittivity

__ 9 1

Px) = 27m(er + 2) |x|

Placing a point charge Q placed at t=0 at x=0 on the boundary between two hal-
spaces of different permittivity and conductivity, Laplace domain

Q 1 S €1+ £2
271'(61—|—€2)(8-|—1/T) ’XI o1+ 09

@(xa 3) -

Time domain

Q 1 —t/T
——————(— —— €
2’]1'(61 -+ 62) IXI

The current flowing through a half-spheres in the two layers are given by

SO(Xat) =

ng e—t/'r

1) = B )2 = P e () = alB(r 2 =

(61 + 62)

Q1=-/Ooofl(t)dt: . Q Q2=/Ooofz(t)dt: 7 Q Q1+Q2=0Q

o1 + 09 o1+ 03

12/4/19 Signals in Particle Detectors, W. Riegler/CERN
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Thin layer of charge on the boundary of two media

y
A
An infinite thin layer of charge at z=0 with charge density q [C/cm?] on the boundary
of two infinite dielectric half-spaces
E= —1
€1t &2

Placing the charge density g at t=0 with the two infinite half-spaces having a
conductivities 0, and o,

q €1t &2

E(s) = (e1 +e2)(s+1/7) T o1+ o9

_ q —t/T
Et) = ——
( ) (61 +€2)e

The time dependent charge on the interface is

e1E(t) + e2 E(t) = q(t) N q(t) = qe t/7

In case the half-space z<0 has conductivity o and the half-space z>0 is insulating the
time constant is

£
ngo(er—}-l)

Signals in Particle Detectors, W. Riegler/CERN 16
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Point charge Q in presence of a conducting half-space

y
A

Point charge Q at position 0,0,a in a geometry with two infinite half-spaces of different
dielectric permittivities

Q 1 €1 — €2 !
QO(X) 2 2 7 2 2 2 z>0
4mes \/x +y —1—(z—a) 52+53\/33 +y +(Z+a)
2 1
_ Q €1 z <0

dmeg €1 + €2 \/332 +y?2 + (2 —a)?

Point charge Q at position 0, 0, a in a geometry with an infinite half-space of conductivity
sigma. Replace €, by €,, €, by €, + a/s and Q by Q/s

Q QUL—e"7)
px,t) = 71,2 z 71,2 2 z>0
dmegr/22 +y2 + (2 —a)?  dweg/2?2 +y2 + (2 + a)
—t/T
= (e 2z <0 T =2¢e0/0

dmeg /2% + y% + (2 — a)?

At t=0 the field is equal to a single point charge Q at 0,0,a. At t=infinite there is a point
charge Q at 0,0,a and a mirror charge at 0,0,-a.

Signals in Particle Detectors, W. Riegler/CERN
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Quasi-static Approximation of Maxwell’s equations

Layer of charge on the boundary between two dielectric layers and two

Z=¢
grounded plates at z=-b and z=g.
Eib+ E2g=0 —e1E1 +e2F> =g _z=0
b
El et —L E2 = —q Z:'b
€19 + €2b €19 + €2b
Replace €, by g,¢, +0/s, €, by €,and q by g/s
— 94 —t/T _ bq —t/T =) ( z=g
Fi(t)=———°c¢ E5(t) = ——e T=—\|& +
1(?) €19 + €2b 2(t) €19 + €2b o
In case b=g the time constant becomes equal to the case of two infinite . Z=0
half-spaces.
z=-b

12/4/19 Signals in Particle Detectors, W. Riegler/CERN 18



Quasi-static Approximation of Maxwell’s equations

Point charge on the boundary of two dielectric media with grounded planes at 4 y =
z=-b and z=¢g |
o (~ 4 sinh(gk) sinh(k (b + z)) I =
_ 9 sinh(gk) sin + 2z _
002 = = [ aoten) o Bk —b<z<0
oo ' ' - z=0
bor.2) = gf Jo(kr)4smh(bk) sinh(k(g — z)) dk 0<z<g 7Y
2n Jo D(k)
D(k) = 4[&1 cosh(bk) sinh(gk) + &7 sinh(bk) cosh(gk)] 7=-b
Assuming layer 1 to have conductivity o we have
g1 = sos,+0/s e2=g Q1 =0/s (4.14)
Q0 (" sinh(gk) cosh(k(b + z)) z=qg
Er(r.z.5) = 2nsj; kT (kr) o Sk (bk) cosh(gk) + (&, + o/ (e0s)) cosh(bk) simhghy] X 1)
_ 0 0 sinh(bk) cosh(k(g — z))
Ex(rz,5) = 2ns£ kJo(kr) o TSinh(bk) cosh(gk) + (2, + o/ (£03)) cosh(bk) sinh(gk)] *~ z=0
We find the time dependent fields by performing the inverse Laplace transforms and have
Ernan =-2 f k Jo(kr) SR(8K) COSMKCD + 2)) s/t gy (4.16) . z=-b
2n Jo goD(k) ! —
_Q *© sinh(bk) cosh(k(g —2)) _,/r ) -
Ex(r,z1) = o— j; k Jo(kr) TS e dk

with

(k) = % (s, + ::Jn]hhgg)
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Quasi-static Approximation of Maxwell’s equations

_ 9 ® sinh(gk) cosh(k(b +2)) _/rap)
E\(r,z,t) = o= f(; k Jo(kr) oD () e’ dk
_ g o Slllh(bk) cosh(k(g - Z)) —t/7(k)
Ey(r,z,t) = 27rf0 k Jo(kr) 20D (%) e dk
with
D tanh(bk)
T(k) = = (s,- + tanh—(gk))

£0

T(k=00)=—(&,+1) =71
o 'r(k=0)=@(£r+2)=1'2
o gl

The charge disappears with a continuous distribution of time constants of t, and ;.
This situation would correspond to a charge deposit in a resistive plate chamber.
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Point current on aresistive layers

rsoq = b rogq = 2.3b  rogq, = 3.9b

' 0w/ 10727 s .
— //——__
Z=g 08l 0.8
E 2 EO Io _ 0.6/ 067
----------------------- S I—— L ¢
. 0- 0.4+ 0.4+ |
I\l
E1 anr ‘V¢M¢‘PO( ) 02} 02
Z=-
i | . - - /b : - ' - L c/b
X=y= =0 a) 0.0 0.5 1.0 15 2.0 25 30 b)) o 1 2 3 4 5
- Figure 12. a) Current density io(r) at z = —b. The exact curve together with the 2"¢ order and 4" order

approximation from eq. (4.20) and the exponential approximation from eq. (4.22). b) Total current at z = —b
flowing inside a radius r from eq. (4.23).

= — E ,Z = —b - — —J — —d
folr) = ~o'£i(r, 2 ) vr Jo 27°V% cosh(y) Y

“1 r y T 2n+Drr T b r
—J(—) dy = = —1"2n+1K(—-)m—e”f’(> for — > 1
j; 27\ ) cosh(y)® 2;0( N N R b

’ . N g = g 2n+1)nr
I(r)=J; 2rrio(r')dr’ = I [1 _anﬂ](_l) SKi (TE)]
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Point charge on an infinitely extended resistive layer

z
| @4(x,y,z,t) for z>0
A f'q(x’y’t) y ///,v y
y aen X ; 3
RO y Q T
v

A point charge Q is placed on an infinitely extended resistive layer at r=0, t=0. The potential for
z>0 and z<O0 is given by

0 1 0 1 1

$1(r,z,1) = #3(r,z,1) = V=
4r80 2 + (—z +vit)? Aneo \rZ + (z + v1)? 260R

The potential is equivalent to a point charge Q moving along the z-axis at a velocity v

The charge distribution on the resistive layer as a function of time is

d 3
4i0) = 02 | — 80 g = 2V

0z 0z 2 1/(,.2 +v212)3

At no time this charge distribution assumes a Gaussian shape.

Signals in Particle Detectors, W. Riegler/CERN
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Point charge on an infinitely extended resistive layer

A resistive layer in presence of a grounded layer. A point charge is
placed on the layer at r=0, t=0

=—3 - —k(1 — )= T = — = 2bgoR
q(r,t) r 2, kJo Kb exp |—«(1—e )T dk . beg

For long times we can make the approximation

t t
— k(1 = -2k © ~ =2 25
K(1=-e )7 “T

And the charge distribution becomes

0 1 .

1) = — —— T 8b21/T
9(r:1) b’n St/Te

The charge distribution does indeed assume Gaussian shape ...

Signals in Particle Detectors, W. Riegler/CERN

23



Capacitance, Impedance

A constant voltage applied to a capacitor with homogeneous dielectric permittivity V,
Vo
()= = = #=
LA
(¢ _ W T
Q1= —¢ d A Qx=¢ P A
A time dependent voltage applied to a capacitor with conductive material Q1 =

V Vv

Q1(s) = — (5) A Q2(s) =« (5) A

d d
V(s)
In(s) = JVC(;) A
) VS) Q) | 19)
t —
Qz( ) _ —IQ(t) +I(t) z=d
dt |
A A 1 V(s)
I(s) = sQs(s)+ I5(s) = (ss——l—o—)Vs —(SC—I——)VS =
() = 5Qa(5) + Iols) = (527 + 07 ) V(s) 7)VO=76 Rl L
1
—=R
7 — _sC
WL R 1

12/4/19
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Quasi-static Approximation of Maxwell’s equations

A constant voltage applied to a geometry with two insulating layers

—E1b— Exg =V
g2V
Ey =—
. €19 + €2b
€182AVy
=1 EB1A=—
Ql €11 5lg+€2b
Q1 =-CV Q2 =CVy

C =

A time dependent voltage applied to a geometry with an insulating and

a conductive layer

(5057"8 + J)V(S)
Eals) = = (b+erg)eos + go
I(s) = 5Q = ‘Z/Eg Z(s)
Cl = c":'()&'ré Cg = &p0—

V(s)
—e1E1+e3E, =0
c, 1
B — e1Vo
2 €19 + 2b
C
Q2 = —e2FA = €1624V0 1
€19 + e2b
C1Cs A A
G rq, G1Tay G=ead 1
V(s)
Q2 = —coEa(s)A e
1
R sC1q + 1
R+ sé’l sCo R —
B 16
g A

Signals in Particle Detectors, W. Riegler/CERN
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z=g
- .z=0
z=-b
Q L
V(s)
Qx(s) ‘ l I(s)
z=¢g
.Z2=0_
z=-b
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Capacitance matrix for insulating media

N+1 metal electrodes at potentials V,, will result in charges
Q,, on the electrodes. VIEx)Vex)] = —px)  o(x)|xea, = Vi

Vo

Qo E(x) = —Vi(x)

Using the weighting potential for each electrode
\4 [E(X)Vlbn(x)] =0 wn(x)|x=An = Vwémn

we can construct the solution to the problem

Inserting this in the above relation results in

Z j{ X)V U (X)dA = cpmVin

v

This defines the capacitance matrix of the system Cmn = 7 jé\ ) £(x) Vihy, (x)dA

12/4/19 Signals in Particle Detectors, W. Riegler/CERN
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Admittance matrix for conductive media

N+1 metal electrodes at potentials V,, will result in charges Vieers(x)Ve(x,8)] =0 @(x,5)[x=A, = Va(s)
Q, on the electrodes.

o(x,s)

V,(S) Eeff(X,5) = e(x, ) +

Qu(S)

E(x,s) = —Vp(x,s)

fot(s) :]{ ceff(x,s)E(x, s)dA

n

Using the weighting potential for each electrode
\% [5eff (xv S)VdJn (X, S)] =0 ¢n(xa 5) |x=An = Viwlmn

we can construct the solution to the problem

Vin
s) = Z V—wwm(x, s)
m
Inserting this in the above relation results in

Qi(s) =) an}(S) j‘g Eefy (%, )V (X, 5)dA = chm
w A,

m

v

e:ct( ) = SQext( ) = Z SV"'ZU(S) f; Eeff(X,8)Vihy(x, s)dA = Zynm(s)vm

This defines the ‘admittance’ matrix of the system: Y (5) = — f Eeff(X,8) Vb (x, 5)dA
A,

Vi
12/4/19 27



Impedance Matrix

As in the case of the capacitance matrix we define one electrode as
the reference electrode in order to have a unique relation between
currents and voltages

ymn(s) =
=Y Unum(S)Un(s)  Un(8) = D> 2am(9)iss™ () Zomn = Y

The matrix y,,,, the Admittance Matrix of the system
The matrix z,,, is the Impedance Matrix of the system

12/4/19 Signals in Particle Detectors, W. Riegler/CERN



Equivalent circuit, Impedance elements

Un(s) = Va(s) = Vo(s) jext (s) 1X45(s)

Z,s) O
— '/Uz(s)

Z,(S) l (S)

Ay
The impedance elements of the equivalent circuit are defined by
inn(s) = 2L i (s) = 208 = Um(5)
X Znn(s) Zmn(s)
> Using the fact that the sum of the?ve current at each node is zero
-ext _ :
on(5) = T B o 06.5) Vi (x, ) A ) = D o)
N o we can relate the impedance elements Z_, to the Admittance Matrix y,,,
igxt(s) = Z ynm(S)Um(S) 1 1 1
m=1 Znm(8) = — n#m Znn(8) = =—— n=m
" y”m(s) " 27]:,:1 ynm(s) Yon
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Impedance elements

The weighting field of electrode 1

seo Vi

EY(s) = —
1 (s) eos(b+erg) + go

Using the general formula for the impedance matrix

S
Ymn(S) = V—% Eeff(x,5) Vb (x,5)dA
w JA,
we have
yloz—A(EOET‘FE)EiH( ) = !
w S Z11(S)
R -L 1
o sCh
Zu () R Sé,l * sCh
A A 16
Cl :Eoc‘:r? 02—505 R:;Z

VO
1 Z=(
_.z=0
0 z=-b
V(s)
V(s)

J: C, 2=9
1 _.z=0
TC

z=-b
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Weighting fields

v

\Y [Eeff (%, 8)Vihu(x,8)] =0 Un (X, 8)|x=A, = Vudmn
The weighting potentials in the Laplace domain are due to

v application of V,, to the electrode in question and grounding all the
o(x,s) = %: V—Zwm(x, s) others.

1 ¢ , o In the time domain this refers to a delta function V,, 8(t) applied to the
p(x,1) = V. Z/O Y (X, — 1) Vi ()it electrode in question. !
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Extension of the Ramo Shockley theorem

[4] E. Gatti, G. Padovini, V. Radeka, Signal evaluation in multielectrode radiation
detectors by means of a time dependent weighting vector, Nucl. Instrum.
Methods A 193 (1982) 651-653.

[9]1 W. Riegler, Extended theorems for signal induction in particle detectors, Nucl.
Instrum. Methods A 535 (2004) 287-293.
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o Theorem, induced charge

The charge induced on a grounded conducting electrode

by a point charge g at position x can be calculated the
following way:

Remove the point charge, put the electrode in question to

potential V,, while keeping all other electrodes at ground
potential.

This defines the potential 1, (x) and the induced charge is

ind__i
Q" = wan(x)
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Qind0

Theorem, induced charge

The charge induced on a grounded conducting electrode by a point
charge q(s) at position x can be calculated the following way:

Remove the point charge, apply a voltage V,[(s) to the electrode in
guestion while keeping all other electrodes at ground potential

ind g) = ext s) = — Q(S) X. S
Q() = @ (5) = st 9)

Qind(t) — L—l [Qind(s)]

Qind0

Note that this charge does not refer
to the charge that is sitting on the
electrode but to the charge that is
brought into the system i.e. the
charge that has moved between
ground an the electrode.

That’s exactly that charge one
measures if one connects an
amplifier to the electrode.

[
>

X

Signals in Particle Detectors, W. Riegler/CERN
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Qind0

Theorem, induced charge

In case we have a time varying external charge density in between
the electrodes we have

Qewt X s Pe X, S)d333‘ Qind(t) — L—l [de(sﬂ

In case we chose to apply a delta function for finding the weighting
field we have

Q') =~ [ npxads Q) = L7 Q)

Qur(t) / fib»n, Y pe(x,t')d zdt

If there is a charge moving along a trajectory x,(t) the charge density
amounts to

pe(X,t) = qd(x — x1(1))
And the induced charge is

t
Q' (t) = —Viw fo Y (x1 ().t — t')d>zdt

Note that vy, is not a physical potential, since the delta function gives
it a dimension of V/s.
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Qind0

Theorem, induced current

Applying the delta voltage pulse to the electrode in question we find the
potential Y ,(x, t) and the field E,(x, t) from which the induced current can be

calculated the following way:

I1(6) = =sQi'(s) = 1 [ vl shpulo o)’

pe(X,t) = qd(x — x1(t))

1emt(t) = — L t E,(x1(t"),t —t")xq(t")dt’
Vi Jo

- Ramo-Shockley theorem extension for conducting media

Note that E,, is not physical potential, since the delta function gives it a
dimension of V/cm s.

In case the material is an insulator there is no time dependence of the weighting
field and we recuperate Ramo’s theorem.

En(x,t) = Eno(x)0(t — t')  I€H(t) = —ViEno(xl(t))}'cl (t)dt

w
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RPC

Amplifier

2mm Aluminum

3mm Glass

HV
300um Gas Gap

T~ &y/ o =~ 100msec

Example

Silicon Detector

- D

Depleted Zone

Vdep

Tt €y/oc ~1ns
heavily irradiated silicon has larger resistivity
that can give time constants of a few hundreds of ns

Signals in Particle Detectors, W. Riegler/CERN
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#
Weighting Field of Electrode 1

electrode? T

)

Weighting Field of Eleit:trode 2

electrode2

Example

Elz(s) -

EGVO VC]ET 5 —I_ Til > 0
— e
Eadz + Ebdl (dj_ + dQET) s+ %
Ve Vi
EpV0 0 s 2 <0

cads +5pd1 (d1 + dosr) s+ =

_ Ereg L= £0 (dl + dz&'r)

o o do

EZZ(S) - _Elz(s)

Signals in Particle Detectors, W. Riegler/CERN
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At t=0 a pair of charges q, -q is created at z=d..

Example

xg(t) = dg — vt

One charge is moving with velocity v to z=0 — 0
Until it hits the resistive layer at T=d,/v.

electrodel

|
|
>

zo(t)

|
o

£rVp

T17Z

t
= — T2—T1 ., 15
J o E1.(Z,t) = diterdo 6(t) + € T?]

a

I1(t) = ql’al—_ﬁhg [1+ (L —e ™)

Signals in Particle Detectors, W. Riegler/CERN
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Example

!
12(t) | =
| @
electrode?2 g : a
\b‘v | d2 -
| =a
' y GREEEEETELL: = 7=0 Lj
dl =
LL(t)
In case of high resistivity (t>>T, RPCs,
irradiated silicon) the layer is an insulator. 10 -
In case of very low resistivity (t <<T, silicon) the 5L
layer acts like a metal plate and the scenario
Is equal to a parallel plate geometry with plate 0 : : : : : : | |
0 02 04 06 08 1 12 14 1.6 18 2

separation d,.
t/T

The total induced charge is always equal to q !

]m I (t)dt =g

0
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Strip Example

What is the effect of a conductive layer between the
readout strips and the place where a charge is moving ?

Signals in Particle Detectors, W. Riegler/CERN
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Strip Example

—w/2 x=0 1=w/2

X

Electrostatic Weighting field (derived from B. Schnizer et. al, CERN-OPEN-2001-074):

Vo
™

Fa(z, 2) = L * dk cos(kx) sin (k ©) 2¢123 coshlr(p — 2)]

27 (1 +22)(e2 + 23) sinh[k(p+ )] — (1 —e£2)(e2 +3) sinh[k(q — p)] — (21 +£2)(e2 — £3) sinh[k(2g+ ¢ — p)] + (1 —e2)(e2 —£3) sinh[xk(p + g — 29)]

Replace g, - ¢, &, > gyto/s, e gzand perform inverse Laplace Transform
— E,(X,z,t). Evaluation with MATHEMATICA:
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Strip Examble

T<<T B

T=10T
T=507T
T=500T7

HO 15(0)

=
i

=
i
=
i

I(t)/qvo(llcm)
o
I(t)/qvo(llcm)
o
I(t)/qvo(llcm)
o

=
-
=
-
=
-

2
=
W

0.05 @K 0.05 |

=]
=]
=]

-0.05 - -0.05 - -0.05 -
-0.1 - -0.1 -0.1 -
-0.15 i 1 i -0.15 i i i -0.15
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 0 0.5
vT vT

The conductive layer ‘spreads’ the signals across the strips.
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Charge spreading

: Z5=9
v
€ o‘l -Q
------------------------ ' R~~~ Z1—0
81,0 i Vw
WX': ZD—‘b

10 =&0/oc=¢€0p. T =g/v

In some detectors, a resistive layer is applied on top of the
readout strips to spread out the charge and therefore
‘increase’ the pad response function.

This example shows a resistive ‘bulk’ layer on top of the
readout strips. The layer is in contact with the strips, so
charge can move from the strips into the resistive layer.

» The solid blue line shows the situation for the given
time constant.

* The dashed blue line shows the situation for zero
conductivity

* The dashed magenta line shows the situation for infinite

conductivity

12/4/19 Signals in Particle Detectors, W
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I
a) 0o 0.5 10 15 20 25 30 /T b) o0 05 10 15 20 25 30 /T

Figure 31. Uniform charge movement from z = O to z = g, with g, = 1,w, = 4g,b = g, 10 = 10T for
a)x = 0and b) x = 4g.

K)/(Q/Ty IM/Q/T)
100 005
08 | I | | 004 .
7
/
0.6 | — 0.03 y
L] H
_T TTTEmree—een I
To— 04 , , oo2f ,4
0 7
I 4
02 | 001f P
I
T_T‘I_‘ﬁ-—» T

1,
a) 0 05 10 15 20 25 30 /Tb) 0.0 05 10 15 20 25 30

Figure 32. Uniform charge movement from z =0to z = g, withe, = Lw, =4g,b=g, =T fora)x =0

and b) x = 4g.
KH/Q/T) Lo/Q/T)
e ! 005
b
08 [ | | | 004 L
-
/
06 ! ! | 003 ,r’/
01T = e
TO_ . 04 I | 002 L A
"‘
i’ II
02 | I ootf ALl
e
a) o0 05 10 s 20 25 30 /T b) oo 05 10 L5 20 25 30 /T

Figure 33. Uniform charge movement from z = 0to z = g, with e, = I,wy, = 4g,b = g, 19 = 0.1T for

a)xTOandb)x=4g. 44



Charge spreading

V=0 |
. Z5=9
£ Hv
R_° o,‘l Q L
: Z1=
81 i Vw
,I ZO='b

T() = SoRg T g/v

In some detectors, a resistive layer is applied on top of the
readout strips to spread out the charge and therefore
‘increase’ the pad response function.

. : . T,=0.1T
This example shows a thin resistive layer on top of the
readout strips. The layer is insulated from the strips.
« The solid line shows the situation for different time T,=0.01T
constants
» The dashed line shows the situation for infinite resistivity
T,=0.001T
12/4/19 Signals in Particle Detectors, W. Riegler/CERN
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Figure 38. &, = 1, w, =4g,b=g,T; =0.001T for x = 0, x = 4g,x = 8¢.
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Induced voltage, equivalent circuit

Signals in Particle Detectors, W. Riegler/CERN
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ind
\ 0

Theorem, induced voltage, static

The voltage induced on an uncharged and insulated
conducting electrode by a point charge g at position x can
be calculated the following way:

Remove the point charge, put a charge Q,, on the
electrode in question while keeping all other electrodes
insulated and uncharged.

This defines the potential y,(x) and the induced voltage is

Vind(t) = &m(x(tn

Signals in Particle Detectors, W. Riegler/CERN
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Theorem, induced voltage, dynamic

Applying the delta voltage pulse to the electrode in question we find the potential
Y, (X, t) and the field E,(x, t) from which the induced current can be calculated the
following way:

S

Q ] Xn (X, 8)pe(x,t)d>x

pe(x,t) = qd(x — x,(t))

Vznd( )

n

yind(g fol ), t — )%y (¢)dt'

Since the admittance matrix relates currents and voltages on the electrodes in
absence of charge, the admittance matrix relates the weighting fields E, and K,
and therefore related the currents induced on grounded electrodes and the
voltages induced on insulated electrodes.

Iznd Z ynm Vznd )

This means in turn that we can first calculate the current induced on grounded
electrodes and then place these currents as ideal current sources on the
equivalent circuit of the medium.
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Equivalent circuit, Impedance elements

|indl(t)

5(1) Vi”dl(t)

Z14(s)

L) 1ot

1 1
Znm(8) = — n#m Znn(8) = —x
( ) ynm(S) ?é ( ) Zm:l ynm(s)
Ymn(8) = Viwf c‘:‘eff(X, $)Vihm(x,s)dA
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Equivalent circuit, Impedance elements

zZu(s Zy (s)

[4nd(t) L)
2

V,ind(t) vty
2

In case the electrodes are not insulated
but connected with discrete linear
Impedance components we can consider
them as part of the medium and we
therefore just have to add these

elements in the equivalent circuit.

o(t) 1 _ 1 1
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Nonlinear media

[6] L.A. Hamel, M. Julien, Comments on Ramo’s theorem, in: Ralph B. James (Ed.),
Hard X-ray and Gamma-Ray Detector Physics III, in: Proceedings of SPIE, 4507,
2001, pp. 255-263.

[7] L. Hamel, M. Julien, Generalized demonstration of Ramo’s theorem with space
charge and polarization effects, Nucl. Instrum. Methods A 597 (2008) 207-211.

Nuclear Inst. and Methods in Physics Research, A 940 (2019) 453-461
An application of extensions of the Ramo-Shockley theorem to signals in

silicon sensors
W. Riegler

CERN, Geneva, Switzerland
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Static electric field in a biased silicon sensor

Metal electrodes embedded in a medium with
25 (6) * Static space-charge p,y(x)

e Position and frequency dependent permittivity €(x, s)

* Position and frequency dependent conductivity o(x, s) = 1/p(x,s)
(p ... volume resistivity)

* Connection of the electrodes with discrete impedance elements z_(s)

* Nonlinear material i.e. py(x), €(x, s), o(x, s) can depend on the voltages V,
applied to the electrodes.

Laplace parameter s=iw —> Silicon sensor !
w ... frequency
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2.1. Induced voltage

gg)(:fs)) Zy4(s)

o(x.s)

Zy(s)

a) = b)
Figure 2: a) Two point charges g, —q placed in the detector at ¢ = 0. Their movement induces voltages V,,(t) on the

electrodes. b) The electric field K p1(Z,t) due to placing a charge Q(t) = Qo©(t) on electrode 1. This is equivalent to
placing a current I(t) = Qod(t) on the electrode.

4 pair of charges q, —q is created in the detector at t=0 and these charges are moving in the electric field
Ep (%) along trajectories T1(t) and To(t). The voltage Vi™4(t) induced on electrode n (Fig. 2a) can be
calculated by

vind) = —& [) R, [#1(t), t — t] &, (¢)dt! (5)
+C% /0 t R, [Z2(t)),t — ') F2(t')dt!

where the weighting field I?n(f, t) is defined the following way (Fig. 2b): the charges q,—q are removed,
an ‘infinitesimal’ charge Q(t) = QoO(t) is added to electrode n, which results in a field Kp,(Z,t), from
which the weighting field K, (Z,t) is derived as

R, (%,t) = Kpn(Z,t) — Ep(Z) (6)

12/4/19

Induce voltage

This weighting field is defined by placing a ‘step
charge’ or ‘delta current’ on the electrode in

guestion and calculating the resulting electric
field.

This theorem is very well suited for calculation of
signals with TCAD simulation programs.

One can add the entire discrete circuitry like
biasing network, amplifier etc. to the TCAD
model and directly find the voltages induced on
the nodes.

In TCAD one can e.g. use a triangular current
pulse with duration T and peak value I, and then
use Qq = I, x T/2, where T must be chosen much
smaller than the reaction time of the medium.

It 1,0

t
T
In general any current I(t) with Q, = [I(t)dt can be
used, as long as the duration is much smaller
than the reaction time of the medium.



2.2. Induced charge on grounded electrode

Induce charge on
grounded electrodes

polx)
£(x,s)

o(xs) PolX)

£(x,s)
o(x,s)

This weighting field is defined by placing a
step voltage on the electrode in question and

) - b) 5 calculating the resulting electric field.
Figure 3: a) Two point charges ¢, —¢ placed in the detector at ¢ = 0. Their movement induces a charge Q. (t) on a grounded . . . .
electrode. b) The electric field Hp, (&,t) due to adding a voltage V(t) = Vo©O(t) on electrode 1. This theorem is well suited for calculation of
signals with TCAD simulation programs when
A pair of charges q, —q 1is created in the detector at t=0 and these charges are moving in the electric the input impedance of the amplifier that

field Ep(%) along trajectories T1(t) and T3(t). The charge Q™ (t) induced on the grounded electrode n

(Fig. 3) can be caleulated by connects to the electrode is negligible with

respect to the other impedances in the circuit.
t
Q) = & [ Auls) e -1 Riear 1)
0.Jo . .
Pt o !n that case In(t)=-dQn(t)/<.jt. directly gives the
_Vofo Hy, [Z5(1),t — '] &2 (t')dt input current to the amplifier.
where the weighting field ﬁn(:E:', t) is defined the following way (Fig. 3b): the charges q, —q are removed,
an ‘infinitesimal’ voltage I»_f(t} = VoO(t) is added to electrode n, which results in a field Hpn(Z,t), from
which the weighting field H,(Z,1) is derived as

H,(Z,t) = Hpn(Z,1) — Ep(Z) (8)

12/4/19



2.3. Induced current on grounded electrode

Figure 4: a) Two point charges g, —q placed in the detector at t = 0. Their movement induces a current I';(t) on grounded
electrodes b) The electric field ﬁgl(f, t, At) due to putting a 'square voltage pulse’ V3[B(t) — ©(t — At)] on electrode 1.

The current induced on a grounded electrode is simply defined as the derivative of the induced charge,
which gives
_dQir(t)

e (10)

9 |5 1= g t“: P NN el
Y {Hn [x1(t),0]a:1(t)+£ HY [Z1(),t —t'] £ (t )dt]
9 |5 = g t“: = (4l N N gl
v {Hn [xz(t),(}]azz(t)+/0 HW [Zy(t),t —t'] Ea(t )dt]

A pair of charges q, —q is created in the detector at t=0 and these charges are moving in the electric field
Ep(Z) along trajectories T1(t) and Z2(t). The current I4(t) induced on a grounded electrode (Fig. 3a)
can be calculated by

in _ N A AP T,
rird(g) = _Vo/{, W, [Z1(t), t — t'| £1(¢)dt (15)

t
+1 f W, [Z2(t),t — t'] Zo(t))dt’
Vo Jo
where the weighting vector Wn(f ,t) is defined the following way (Fig. 4b): the charges q, —q are removed,

an ’infinitesimal’ voltage pulse V(t) = V5[O(t) — O(t — At)] is added to elecirode n, which results in a
field E'Dn(&‘, t, At), from which the weighting vector Wn(&‘, t) is derived as

= . 1 = S
Wﬂ(x? t) - ﬁligo E[EDH (1?, t? At) - ED (17)] (16)

In contrast to K (&, t) and H(Z,t), the vector W(, t) does not represent an electric field but a vector with
units V/cm s. For the case where Ep(Z) = 0 the weighting vector W, (&, t) then becomes the response
17 to a delta pulse Vod(t) on the electrode n.

Induced Current on
grounded electrodes

The induced current can also be calculated by a ‘weighting
field’ or ‘weighting vector’ W, that is causes by a small
voltage pulse on the electrode in question.

W(x, t) has units of V/cm*s and therefore does not
represent an electric field.

Using this weighting vector the induced current can be
calculated directly.

This weighting vector will always have a ‘prompt’
component that follows the short pulse and a ‘delayed’
component that includes the reaction of the medium.

When using this weighting field for numerical simulations it
is useful to use these two components separately to avoid
numerical issues.

vit) L1



Induced Currents and Voltages

The charges Q" (t) and current I"d (t) = -
dQ,(t)/dt are related to the voltages V" (t)
induced on the electrodes that are connected by
the discrete impedance elements z,(s) throught
the admittance matrix y,,(s).

Let us assume we have calculated the weighting
field H(x, t) or the weighting vector W(x, t) for
the induced charge or the induced current, for
the case where the other electrodes are held at
fixed potentials i.e. the interconnecting
impedance elements z_(s) do not play a role.

We perform the Laplace transform and have
H.(x, s) and W_(x, s).

We define the admittance matrix y, . (s) by
integrating these weighting fields over the
electrode surfaces.
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|1ind(t)

Po(X)

X
q

) Xa(t)

V2
12"(t)
1(t)
-q

\

-t

Wi (@, 1) =

e Po(X)
o(x.s) “\ €(x,s)
a(x,s)
I5nd(t)
Vs
. q t - —
rird) = —= f W, [Z1 (), t — ') 21 (¢)dt'
V[} 0

t
+ 2 f W, [Fo(t), t — '] Eo(t')dt'
V[} 0

S

im -
aér—nm Al

- = j{ e(Z,5) + o (&, 5)/s)| Wo(Z, s)dA

Vo

m

1
- _ynm(s) m#n
1

Ei:] Ymn(8)

(Epn(#,t,At) — Ep ()]




2y (s)

Equivalent Circuit

14nd(t) L)

Po(X)
£(X,s)
a(x,s)

15nd(t)
V3

zu(s Zy (s)
I4n9(t)

280 |
Vzmd(t)

V3ind(t)

|3ind(t)

Z3(s) Zyy(s)

The electrodes and the medium can be represented by nodes that are connected by impedance elements.

The induced voltage signals for the case where the electrodes are connected by arbitrary impedance elements can then be
calculated by the induced currents on grounded electrodes together with the equivalent circuit diagram.

In case the medium has no conductivity, i.e. 0=0, these impedance elements are Z,=1/sC. . with C  being the mutual

electrode capacitances.

This second method for calculating the induced voltages has the advantage that one calculates the currents I" (t) and the
impedance elements Z_ (s) once and can then perform all further calculations for different readout and biasing circuits in a

separate SPICE simulation.
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