

Nanosat Student Initiative (1st thoughts, September 3, 2019)

The student challenge: to design next-generation of nanosatellite(s) which combine new technologies and earth-observation challenges fulfilling Sustainable Development Goals. This will require detailed investigations among and across several disciplines where both experimental and modelling approaches are welcome. Potential sub-topics could include, among others:

- Thermal: thermal protection systems, insulation....
- Materials: light-weight materials development and characterization wrt thermo-mechanical fatigue, creep etc...
- **Structures:** static and dynamic behaviour of integrated, multi-purpose structures for the full application range; optimization of structural layout...
- **Systems:** design of on-board systems; electronics, power generation, communications and data links...
- Positioning & Propulsion:
- Operation, Logistics, Business: network infrastructures and interfaces, launch planning, cost assessment for development-manufacturing-exploitation, commercial viability...
- Environmental issues: ...
- Overall Design and Integration

Possible Working Groups?

Initiative overview

Minimum effort is 3 years;

If EU funding available it could be extended.

Time

Phase I: Ramping-up

Resources

- Existing curricular activities and resources in organizations.
- CERN first version of collaborative platform available (allows creating repository).

Effort

• Each organization requires limited effort.

Objectives

- Increased engagement of Universities
- After 1 year
 elaborate a peer
 reviewed database
 out of existing
 R&D&I activities
 specifically
 challenge oriented.
- R&D&I database (or repository) based mainly on students' projects (i.e. master thesis, PhDs, etc).

Modus Operandi

- Distribute
 participating
 organizations
 around the
 challenges (Work
 Groups).
- Each WG has an overall coordinator.
- Materials uploaded in repository should be peer reviewed by professors of each institution.

Phase II: Repository Analysis

Resources

- Within existing or beyond curricular activities in organizations.
- Enhanced version of collaborative platform (CERN).

Effort

 Effort from each WG coordinator beyond "daily activities".

Objectives

- After 2 years elaborate a synthesis of the gathered challenge oriented R&D&I.
- Propose complementary and missing key experimentation/ simulation suitable to be realised by students.
- Integrate results in the synthesis.

Modus Operandi

- Each WG coordinator spends time elaborating synthesis of results of Phase I and indicates key missing experiments/ simulations.
- Each organization determines the feasibility to carry on key missing experimentation/ simulation
- Each WG coordinator elaborates a final report per challenge.

Phase II: Repository Analysis

Must have

- In-kind contribution of participants.
- Enhanced collaborative platform.
- Final synthesis report per challenge.
- At least 3 meetings among WG Coordinators.

Nice to have

- EU funding to cover efforts related to synthesis and potential experimentation/simulation as well as other activities (i.e. design of enhanced collaborative platform, meetings, workshops, etc).
- General Workshop(s) for all participant organizations (i.e. to share and check challenges vs. synthesis).
- Extra key experiments/simulations based on synthesis report.

Phase III: Conceptualization

Resources

- Existing and beyond curricular activities in organizations.
- Enhanced collaborative platform.

Effort

• Each organization requires effort beyond "daily activities".

Objectives

 After 3 years conceptualise a prototype of the future nanosat(s).

Modus Operandi

- Organise
 participating
 organizations
 around the
 challenges (Work
 Groups).
- Each WG has an overall coordinator.
- General student activity: conceptualize prototype with information of all WGs.

Phase III: Conceptualization

Must have

- •In-kind contribution of participants.
- Enhanced collaborative platform allowing WG collaborative work (synergies).
- Final conceptualization report.
- At least 3 meetings among WG Coordinators.
- •General Workshop(s) for all participant organizations (i.e. to share and check challenges).

Nice to have

• EU funding to cover efforts related to conceptualization and potential experimentation/simulation as well as other activities (i.e. design of enhanced collaborative platform, meetings, workshops, etc).

High Level Gantt Chart

Increasing EU funding useful.

Minimum effort is 3 years;

If EU funding available it could be extended.

Year 1 Year 2 Year 3 Repository Synthesis. Repository Dedicated R&D&I Prototype Conceptualization (activity realised by all Potential extra experimentation/simulation students) tailored to students. **Basic Collaborative Platform** Advanced Collaborative Platform Increasing in-kind effort required

Next steps: organizing the ramping up Meeting

- □ Identify & invite the willing to take part in this initiative.
- □Populate the different Working Groups and challenges.
- ☐ Nominate WG Coordinators.
- □Start developing the R&D&I repository.

