Towards portable muography, with small-area and gas-tight Resistive Plate Chambers (RPCs)

Andrea Giammanco Eduardo Cortina Gil Sophie Wuyckens Samip Basnet Pavel Denim

15th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD19), Siena, Italy

Center for Cosmology, Particle Physics and Phenomenology (CP3) Université catholique de Louvain

samip.basnet@uclouvain.be

October 14, 2019

Outline

Introduction

- Muography
- Guiding Design Principles
- General Considerations on Resistive Plate Chambers (RPCs) for Muography

First Prototype – Operational experiences and Performance

- Assembly and Experimental Set-up
- Data Collection and Analysis
- Results

Outlook

- I essons I earnt
- Future Directions

Summary

Muography

Imaging techniques based on the absorption or scattering of cosmic ray muons $(\mu)[1]$

Figure: Atmospheric muon cascade Taken from Forbes article.

Muons (μ)

- Elementary particle second generation lepton
- Quantum numbers common with electron but 200 times heavier
- Produced in the interaction of primary cosmic rays with the upper atmosphere freely and abundantly

Why cosmic muons?

Most penetrating part of the cosmic shower

- No strong interaction
- Low probability of generating electromagnetic cascades upto very large momenta
- Minimal energy loss due to ionization

Samip Basnet (UCLouvain)

Guiding Design Principles

▶ Use cases (typical e.g. in archaeology):

- The point of observation closest to the target is in a narrow environment (e.g., narrow tunnel)
 - small volume
 - portable (low weight, incl. electronics)
 - robust
 - easy to assemble/disassemble
- Logistical challenges (e.g., no power supply)
 - completely autonomous
 - Iow power consumption
- Other teams are developing portable detectors for the same use cases, based on (but not limited to) scintillating bars

Guiding Design Principles

Use cases (typical e.g. in archaeology):

- The point of observation closest to the target is in a narrow environment (e.g., narrow tunnel)
 - small volume
 - portable (low weight, incl. electronics)
 - robust
 - easy to assemble/disassemble
- Logistical challenges (e.g., no power supply)
 - completely autonomous
 - Iow power consumption
- Other teams are developing portable detectors for the same use cases, based on (but not limited to) scintillating bars

Less portable, temperature dependence of breakdown voltage \Rightarrow increased power budget (??)

(b) Nuclear emulsion

⁽c) Gaseous drift chamber

Guiding Design Principles

Use cases (typical e.g. in archaeology):

- The point of observation closest to the target is in a narrow environment (e.g., narrow tunnel)
 - small volume
 - portable (low weight, incl. electronics)
 - robust
 - easy to assemble/disassemble
- Logistical challenges (e.g., no power supply)
 - completely autonomous
 - Iow power consumption
- Other teams are developing portable detectors for the same use cases, based on (but not limited to) scintillating bars

Less portable, temperature dependence of breakdown voltage \Rightarrow increased power budget (??)

No timing info; resources to analyse plates; issues with start-stop (??)

(c) Gaseous drift chamber

General Considerations on RPCs for Muography

Figure: An ionizing particle (i.e. μ) passing through the gas gap and creating an electron avalanche towards the anode in RPC.

Advantages [1]:

- Large chamber sizes at relatively low price
- Real time information
- Better position resolution (~100µm)
- Better timing resolution, esp. for multi-gap RPCs (~50ps - 1ns)

General Considerations on RPCs for Muography

Figure: An ionizing particle (i.e. μ) passing through the gas gap and creating an electron avalanche towards the anode in RPC.

Some issues for muography with RPCs [1]:

- Gas requirements (gas mixtures, logistics, etc)
- Stability in various environmental parameters (temperature, humidity, pressure variations, etc)
- Power consumption for large amount of readout channels

Assembly of the First Prototype Telescope

Mechanical design @Nicolas Szilazi

Spacers

Aluminum box

Telescope configurations

Vacuum tests

Inside chamber

Detectors assembled with readout and high voltage electronics system

Few months from end to end (Figure from [2])

Samip Basnet (UCLouvain)

Experimental Set-up

Figure: (a) Muoscope set-up consisting of four gRPC layers. (b) One of the gRPCs inside its casing; consists of 16 sensitive strips, hosted in an air-tight aluminum box. [3]

Design principle: must be **portable**

- Sealed; particular care in making gas-tight casings (10⁻⁹ mbar l/s)
- Small (active area:16X16 cm²)
- Total weight with electronics (~50 kg)
- Modular geometry
- Robust and Cheap

Entire fabrication and assembly of first full prototype done locally at UCLouvain with UGent's support

- ▶ 4 planes (x₁,y₁,x₂,y₂)
- Gas mixture (95.2% argon, 4.5% isobutane, and 0.3% SF₆)
 - @ 1 atm pressure

Data Collection and Analysis

Purity evolution of events: Trail and Error!

Results

October 14, 2019 9/13

Lessons Learnt

First test with real-life logistics at Mars Desert Research Station (MDRS) in 2018

- Gas-tightness no significant loss in gas pressure over time
- Portability and compactness single person was able to move and operate the detectors
- Robustness survived round trip between Belgium and the USA

UCLouvain student participating in "UCL to Mars" project in MDRS

Lessons Learnt

First test with real-life logistics at Mars Desert Research Station (MDRS) in 2018

- Only two out of four detector layers were ready
- Different gas-mixture used (freon vs argon)
- SF₆ and isobutane composition in the mixture not as expected
- Large ambient noise picked up from the power generator

Two detector layers at the time of data-taking in MDRS

- Long-term stability for sealed chambers
- More portable trigger and DAQ system
- New coating procedures for the glass electrodes
 Resistive layer in the glass to be painted using shearography
- Optimization and simplification of gas parameters
 Use of ecofriendly monogases

- Muography : imaging with cosmic-ray muons
- Construction of a set of 4 mini-gRPCs (UCL)
- Data collection (Utah Desert + UCL)
 - Modifications of the setup following the problems encountered
- Preliminary data analysis and results
- \Rightarrow The **mini-gRPCs prototype works** first proof of principle!
- \Rightarrow It is compact, portable, gas tight and robust
- \Rightarrow Improved second prototype R&D currently on-going

- [1] L. Bonechi, R. D'Alessandro, and A. Giammanco, "Atomspheric muons as an imaging tool", Reviews in Physics, 2019.
- [2] S. Wuyckens, "Development of a compact telescope for cosmic muon flux and density measurements", Masters Thesis, UCLouvain, 2018.
- [3] S. Wuyckens, A. Giammanco, E. C. Gil, and P. Demin, "A portable muon telescope based on small and gas-tight resisitive plate chambers", Phil. Trans. R. Soc. A, 377:20180139, 2019.
- [4] S. Procureur, R. Dupré and S. Aunec, "Genetic multiplexing and first results with a 50x50 cm² Micromegas", NIM A, 729:888, 2013.