Evaluation of the counting efficiency of a pcCVD diamond detector irradiated by 62 MeV/u carbon beams

F. Schirru^a, C. Nociforo^a, S. Schlemme^{a,b}, M. Kiš^a, J. Enders^b, C. Karagiannis^a, A. Kratz^a, M. Träger^a, R. Visinka^a

^aGSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ^bTechnische Universität Darmstadt, Darmstadt, Germany

GSI Helmholtzzentrum für Schwerionenforschung GmbH

CVD Synthetic Diamonds

Synthetic diamond offers, over more conventional materials, a combination of unique properties which make it an attractive alternative for a wide range of applications in the field of X-, γ -rays and charged particle detection.

*Particle intensity monitors based on pcCVD diamond samples may suffer from a reduction in their counting efficiency. Indeed, the partial CCE may generate signals having amplitudes below the threshold value of the discriminator.

The Goal

Key parameter under study is the counting efficiency ratio between a pcCVD and scCVD diamond detectors as a function of the beam intensity measured by a SEETRAM.

This study will allow to understand the dependence of the counting efficiency ratio respect to the following parameters:

Beam Intensity

Absorbed ions

Additional tasks:

SEETRAM calibration with the SC-DD

Diamond Detectors

Sample	Туре	Dimensions (mm²)	Electrodes (nm), Type	Active Area (mm²)	
2340622-5	pcCVD	20 x 20 x 0.3	100, Au	18.5 × 18	180
2340622-6	II	w	50/100, Cr/Au	u	
2340622-10	w	w	100, Al		• •
534-8A	scCVD	4.2 × 4.2 × 0.16	100, Au	3.2 × 3.2	and the second
534-8B	w	w	w		C more to
534-9A	w	4.2 × 4.2 × 0.2	50/100, Cr/Au	**	
534-9B	w	W	w	w	•

X-rays test settings

Distance	Tube Voltage	Tube Current	Ø Collimator
(mm)	(kV)	(μΑ)	(mm)
10	40	90	

X-rays Tests (i)

Electric field applied 1 V/µm on all devices

Sensors show <u>different</u> *dynamic response*, *leakage current* and *signal-to-noise ratio* according to the electrodes type

Experimental Setup @LNS Facility

Intensity: variable [slits opening, attenuation factors (1, 10, 100, 1000)]

SC-DD Counting Efficiency Assessment

Data collected at the beginning of the experiment

Linear relationship up to 1.25 MHz [Slope coefficient: 0.9998 ± 0.0004]

SC-DD shows 100% counting efficiency

SEM Calibration Factor

The calibration factor was found as linear parameter of a second order polynomial fit $[K = (6295 \pm 320) \cdot 10^{14} \text{ ions/A}, \text{ uncertainty } \sim 5\%]$

$$N_{ions} = I_{SEM} \cdot K$$

Counting Efficiency Ratio

PC-DD Counting Efficiency [< 700 kHz^{*}]: (94.8 ± 2.5)%

Counting Efficiency Ratio

$$R = \frac{N_{PC-DD}}{N_{SC-DD}}$$

Increase with the absorbed ions

Probably due to an increase of the radiation damage in the scCVD diamond material causing the device to have, with on-going irradiation, a smaller counting efficiency

Linked to the different signal length of the PC-DD as compared to that of the SC-DD (from waveform analysis 14 and 3 ns respectively)

PC-DD has higher probability of being affected by pile-up

X-rays Tests (ii)

Long term measurements recorded with electric field applied of 1 V/µm
No remarkable effects on the signal after ¹²C irradiation

Conclusions

SC-DD proved to be a very good alternative to the standard absolute reference intensity monitor based on scintillators

PC-DD counting efficiency (94.8 ± 2.5)% for absorbed ions up to 7.9·10⁹ ions/mm² and beam rate below 700 kHz

The counting efficiency achieved together with the demonstrated radiation hardness^{*} open new perspectives for the use of PC-DDs as particle intensity monitor.

Integration and technical design of PC-DDs within the particle detector combination (PDC) along the beam line in the Super-FRS@FAIR is under discussion.

Detailed information regarding this research work are included in the PhD thesis of S. Schlemme (2019) which can be found here: <u>https://tuprints.ulb.tu-darmstadt.de/8843/</u>

*5. Schlemme et al., "Long-term exposure of a polycrystalline diamond detector irradiated by 62 MeV/nucleon carbon beams", Diamond and Related Materials, Volume 99, 2019