

1

The Upgrade of LHCb VELO

Paweł Kopciewicz on behalf of the VELO group

15th Topical Seminar on Innovative Particle and Radiation Detectors , 14-17 October 2019 Siena, Italy

LHCb experiment

- Operating at LHC, specialized in searching for New Physics (Physics beyond the Standard Model)
- Forward single-arm spectrometer with a very precise tracking system CERN-LHCC-2011-001

LHCb upgrades and plans

LHCb

Run 2

2015-2018

- Upgrade I (2019-2020) to triggerless read-out at 40 MHz and increased instantaneous luminosity to 2×10⁻ ³³cm⁻²s⁻¹ CERN-LHCC-2014-016
- Upgrade II (2030) High Luminosity HL-LHC era, increased luminosity to 1-2×10⁻³⁴cm⁻²s⁻¹ CERN-LHCC-2017-003
 we are here

S2

2019-2020

AGH

2

Pawel Kopciewicz, 15th Topical Seminar on Innovative Particle and Radiation Detectors, 14-17 Oct 2019

Run 3

2021-2023

Detector VELO CERN-LHCC-2001-0011

AGH

> Vertex Locator (VELO) is a detector located closest to the beam intersection region and takes vital part in vertexing and track reconstruction

How's it been so far?

> During Run I and Run II data taking periods vertex detector with planar micro-strip sensors (until end of Run II, December 2018)

right halve

Consistsed of 42 semi-circular modules, each equipped with two 300 μ m thick silicon strip sensors, measuring R and Φ coordinates.

VELO Upgrade I CERN-LHCC-2014-016

- Extensive modernization of VELO is the part of the LHCb Upgrade I, adjusting it to the full 40 MHz readout and higher luminosity
- > From silicon strip detector to silicon pixel detector
 - > Improved spatial resolution
 - \succ Radiation tolerant up to $10^{16} n_{eq}/cm^2$
 - > New front-end electronics
 - Noise-free operation and high reduction of the fake events
 - Faster reconstruction algorithm
- Substantially thinner RF-foil, reduced material budget
- ➢ Efficient micro-channel cooling

Visualisation of VELO after upgrade CERN-LHCC-2013-021

New Sensor/ASIC

- The Velopix is a readout front-end chip of the new VELO detector
- > Made in **pixel technology** (256x256 pixels per ASIC)
- There will be 624 ASICs in the whole detector, which turns into over 40 millions of pixels in total
- Non-uniform particle fluence, data driven up to 15 Gbit/s wihtin the innermost region of the detector
- \succ Pixels closer to the beam than strips in old VELO

Sensor/ASIC specification

- Silicon pixels 55 μm x 55 μm, grouped in logical structures called superpixels (2x4 pixels)
- ► ASIC based on Timepix3 (Medipix) chip
- **TSMC 130 nm CMOS** technology
- Bump-bonded 3 Velopix ASICs to a single sensor
- Triggerless binary readout (40 MHz), timing resolution 25 ns
- ► Radiation hardness of 400 Mrad
- ➤ Maximal data rate of 20.48 Gb/s

Cooling

Primary source of heat are Velopix chips

Sensors must be kept at -25°C during operation in order to minimise the thermal runaway likelihood and limit the radiation damage impact on sensor's performance

Two-phase CO₂ cooling in micro-channel subtrates (subtrates 500 μm thick, with 120x200 μm microchannels)

AGH

Soldered panel, cooling pipes are connected to microchannel subtrate Micro-channels in magnification

Modules summary

Data

Velopix triplets

- Twelve 256x256 ASICs on the module - Connected with the GBTx board

Micro-channel panel

- Subtrate platform
- 19 micro-channels
- Connected with cooling pipes

LV and data cables

- Power supply
- Sensor read-out

Cooling

- Two-phase CO₂
- Using micro-channels

<image>

Constructed module with ASICs, LV cables, subtrate panel and cooling pipes

RF foil

- Separating primary (LHC beam) and secondary vacuum (VELO sensors)
- \succ Foil as thin as possible (500 μm at planning, 150 μm eventually)
- Milled from solid aluminium blocks (whole process took around of 6 months):

RF foil has several other properties, such as dealing with beam wakefields or guiding the beam currents

Etching the RF foil

- Thickness decrease to 150µm is going to be achieved using etching process
- Whole procedure is complex and is done stepby-step
- Removing 40% of the foil (from 250µm to 150µm) should benefit physics performance, among others estimated 10% better decay time resolution!

AGH

Etching the foil (green color comes from the paint)

Sensor testing at SPS testbeam

10

- \succ Velopix has been widely tested under lab conditions and at the testbeam (SPS)
- Steering and calibration tool written in WinCC OA (Siemens Open Architecture)
- > It includes **spatial resolution tests** at different angles, Time over Threshold (ToT) studies and a bunch of other things related to sensor's performance.

Timepix triplet at the testbeam 250 10^{3} 150 10^{2} 100

400

600

200

50

0

200

Server & SQL Database

Stores paths and

metadata

AGH

Filesystem

Stores all the data

Sensor calibration & online monitoring

More emphasis on sensor calibration and monitoring

Status summary

Module production in progress

- > 120% of needed modules in April 2020
- Cooling in advanced stage of production
 - More than 17 soldered panels for now, production approximately 4-5 per week)
- ➢ Foil production almost complete (shipping)

➢ Software

- Calibration working in WinCC, though it needs some improvements
- Monitoring and online database; ongoing work, need to define the final data protocols and decoders

AGH

Status summary

> Module production in progress

- > 120% of needed modules in April 2020
- Cooling in advanced stage of production

More than 17 soldered panels for now, production This is the production allows the production of the production

Software poster about LHCb VELO Upgrade II

Monitoring and online database; ongoing work, need to define the final data protocols and decoders

