

Precision Timing with Low Gain Avalanche Detectors in the CMS MTD Endcap Timing Layer

Marco Costa

INFN & University of Torino On behalf of CMS Collaboration

The High-Lumi LHC challenge

At HL-LHC: without extra info on the track 15-20% luminosity loss

Timing resolution requirements Timing resolution require

Figure 153 ps

• According to CMS simulations:

• <t_{vertex}>_{RMS}= 153 ps

• Average distance between two vertexes: 500 um

• Fraction of overlapping vertexes: 15-20% **Timing resolution require**
 HL-LHC:

• According to CMS simulations:

• $\prec_{\text{Vertex}} >_{\text{RMS}} = 153 \text{ ps}$

• Average distance between two vertexes: 500 um

• Fraction of overlapping vertexes: 15-20%

• Of those events, a la

HL-LHC:

-
-
-
- •Fraction of overlapping vertexes: 15-20%
- •Of those events, a large fraction will have significant degradation of the quality of reconstruction $\frac{2}{3}$ 0.2

Mip Timing Detector in CMS to consolidate particle flow performance at 140PU events, and extend it to 200PU

CMS MIP Timing Detector

MTD TDR Fully Approved https://twiki.cern.ch/twiki/pub/CMS/MTDTechnicalDesignReport/MTD_TDR_final_20191002.pdf

ETL instrumented with Ultra Fast Silicon Detectors

Ultra Fast Silicon Detectors (UFSDs) are Low Gain Avalanche Diodes (LGADs) optimized for timing employing a

Silicon time-tagging detector

Time is set when the signal crosses the comparator threshold

output of the pre-Amplifier and by the TDC binning.

Strong interplay between sensor and electronics

Good time resolution needs very uniform signals

Signal shape is determined by Ramo's Theorem:

 $i \propto qvE$

The key to good timing is the uniformity of signals:

Drift velocity and Weighting field need to be as uniform as possible

Basic rule: parallel plate geometry

Gain current vs Initial current

Significant improvements in time resolution require thin detectors

9

Time resolution

10

UFSD time resolution

UFSD from Hamamatsu: 30 ps time resolution,

Foundries Producing LGADs for the MTD

Using LGADs for a "CMS size" detector poses many challenging: 3 sensor producers considered

Producers have different approaches for radiation damage mitigation, but all vendors can fulfil the CMS requirements, including a factor of 2 safety margin

Next production: Q4 2019/Q1 2020

CMS1 production is due to arrive in Q4 2019 /Q1 2020 CMS1 delivered in Q3 2018 CMS1 production is due to arrive in Q4 Next production: Q4 2019/Q1 2020

Q3 2021: Sensor vendor qualification and final geometry selection
Q3 2022: Sensor vendor selection and pre-production of the selection

• Q3 2022: Sensor vendor selection and pre-production start

UFSD time resolution summary UFSD time resolution summary

The UFSD advances via a series of productions.

For each thickness, the goal is to obtain the intrinsic time re

Achieved:

• 20 ps for 35 micron

• 30 ps for 50 micron

• Comparison WF2 Simul

The UFSD advances via a series of productions.

For each thickness, the goal is to obtain the intrinsic time resolution

Achieved:

-
-

The UFSD advances via a s

For each thickness, the goal

Achieved:

• 20 ps for 35 micron

• 30 ps for 50 micron

²⁰⁰

⁸ ps for 50 Resolution without gain UFSD1 **Contractor** UFSD2, 3150 200 250 300 Thickness [µm]

ETL Structure

-
-
- **ETL Mounting Bracket**
- Disk 2, Face 1
-
- Disk 2, Face 2
- **HGCal Neutron Moderator**
-
-
-

Sensors are mounted in rows on each face of Aluminum readout boards without loosing coverage

14

UFSDs for the ETL

Using UFSDs for a "CMS size" detector poses many challenging

-
-
-
-
- Number of sensors: \sim 18000 (\sim 16 m², \sim 2k 6-inch wafers)
- Sensors of 2x4 cm²
- Radiation hardness

Irradiation effects

Irradiation causes 3 main effects:

- Irradiation effects

Irradiation causes 3 main effects:

 Decrease of charge collection efficiency due to trapping

 Doping creation/removal (the Gain fades)

 Increased leakage current, shot noise
- Doping creation/removal (the Gain fades)
-

 $v = 1.0E + 00e^{-8.5E - 16x}$ o W14 Ga <CV>

Carbon addition works really well, increasing by a factor of 2-3 the radiation hardness But...

Carbon addition works

really well, increasing by

a factor of 2-3 the

radiation hardness
 \rightarrow more details in Marco Ferrero

contribution in poster session

16

But…

contribution in poster session

Vendors performances…so far

- All vendors successful in delivering G = 10 till the end of HL-LHC
-
-

Refs:
https://arxiv.org/abs/1804.05449v2, https://arxiv.org/abs/1707.04961,
https://doi.org/10.1016/j.nima.2018.08.040

On the detector sensor biasing scheme

- the irradiation level (FBK lower Bias than CNM,HPK)
-

Vendors performance … so far Refs:
https://arxiv.org/abs/1804.05449v2, M.Costa – 15th Topical Seminar Costa – 15th Topical Seminar Costa – 15th 15th Topical Costa – 15th 15th Costa – 15th Time resolution https://arxiv.org/abs/1707.04961,
https://doi.org/10.1016/j.nima.2018.08.040 Examples and the sensors achieve 30-35 ps up to

Both HPK and FBK sensors achieve 30-35 ps up to

and 40-45 ps for 2x max fluence

And FBK sensors achieve 30-35 ps up to

and 40-45 ps for 2x max fluence

And FBK sensors a Twice maximum expected fluence

FBK Sensors **W6 Pre-Rad W6 8E14** and 40-45 ps for 2x max fluence

and 40-45 ps for 2x max fluence

And $\frac{1}{2}$

and $\frac{1}{2}$

and 40-45 ps for 2x max fluence

And $\frac{1}{2}$

and 40-45 ps for 2x max fluence

And $\frac{1}{2}$

and $\frac{1}{2}$

and 40-45 ps f • W6 1.5E15 A W6 3E15 600 700 800 Non uniform irradiation problem mitigated: $1.5x10^{15}$ n_{eq}/cm² 50V "undervolt" (we expect <30V) is not significantly affecting timing performance

19

FNAL Test Beam

20

FNAL Test Beam: from single pad to arrays

Uniformity has been studied on 16 pads arrays using a 16ch readout board

Efficiency >99% (except gaps)

Fill Factor >85% per layer

IV sensor characterization

It is impossible to test several m² of sensors using a particle beam: uniformity checks using $\mathbb Z$ automated systems

 10^{-1} 6×10^{-7} 4×10^{-7}

Using a probe card it is possible to measure automatically 25 pads

All pads have a similar current @300V

Very few channels have a leakage current away from the mode:

Table 3.4: Summary of the uniformity studies on the latest sensor productions.

Leakage current > 10x the mode

Leakage current too high: sensor failure

Fully automated visual checks and IV characterization of the 5- 10% wafer under development

ETROC: read-out ASIC for ETL

Requirements:

-
-
-
- irements:

 $<$ 50 ps per hit: ASIC contribution <40 ps

 Pad Size: 1.3x1.3 mm²

 Input capacitance: 3.4 pF

 MPV for MIP: ~6 fC for UFSD @ 10^{15} neq/cm²

 Buffer latency :12.5 µs

 Tirgger rate: Up to 1 MHz
 • $<$ 50 ps per hit: ASIC contribution <40 ps

• Pad Size: 1.3x1.3 mm²

• Input capacitance: 3.4 pF

• MPV for MIP: \sim 6 fC for UFSD @ 10¹⁵ neq/cm²

• Buffer latency :12.5 µs

• Trigger rate: Up to 1 MHz

• Time O
-
-
-
-
-

ETROC0 Design

The front-end has an analog part optimized for UFSDs; 2 time to digital converters per channel; digital buffers and I&O

ETROC Schedule

ETROC Preamplifier + Discriminator

The analog part of the front-end is capable of performing according to the design requirements

ETL expected performance

The expected time resolution per track (2 hits) is expected to be better than 30 ps

Conclusions

-
- LGAD is a mature technology
- Ultra fast silicon detector design choices nearing completion $\frac{1000}{8000}$
- Sensor on schedule
 $\frac{15}{20}$
 $\frac{15$ Received good sensors capable of satisfying ETL requirements **EXECUTE:**
	-
	-
	- - ASIC on schedule
	- ETROC0 with analog part produced and test on going
	- Good agreement with simulations
	- **ETROC1** submitted this summer

1: AIN module cover 2: LGAD sensor 3: ETL ASIC 4: Mounting film 5: AIN carrier 6: Mounting film 7: Mounting screw 8: Front-end hybrid 9: Adhesive film 10: Readout connector 11: High voltage connector 12: LGAD bias voltage wirebond 13: ETROC wirebonds

• Test with sensors (on bench and with beam) planned in Q1 2020 ………. STAY TUNED

Backup

ETROC details

Summary

Table 3.5: A summary of ETROC requirements.

Power consumption

Table 3.7: A summary of ETROC power consumption for each circuit component. The preamplifier, discriminator, and TDC values are obtained from post-layout simulation with conservative assumptions about occupancy and operating temperature. The SRAM and global circuitry power consumptions are conservative extrapolations from similar circuits used in the ALTIROC.

