Evolution of the design of Ultra Fast Silicon Detector to cope with high irradiation fluences and fine segmentation

M. Ferrero^{1*}, R. Arcidiacono⁴, G. Borghi⁵, M. Boscardin⁵, N. Cartiglia¹, M.Costa², G.F. Dalla Betta³, F.Ficorella⁵, M. Mandurrino¹, M.M. Obertino², L. Pancheri³, G. Paternoster⁵, F. Siviero², V. Sola^{1,2}, A. Staiano¹, M.Tornago², M. Centis Vignali⁵

¹INFN, Torino, Italy ²Università di Torino, Torino, Italy

³Università di Trento and INFN, Dipartimento di ingegneria industriale, Trento, Italy ⁴Università del Piemonte Orientale, Novara, Italy

⁵Fondazione Bruno Kessler (FBK), Trento, Italy

4D tracking motivation

Ministerødegli Affari Esteri

Timing-Tracking capability is strongly motivated by high density environments in future hadron collider

Sensors requirements:

- Radiation hardness
- High fill factor (fraction of active area)

Ultra fast silicon detectors (UFSDs) are suitable for 4D tracking in future experiments at HL-LHC:

• Time resolution of ~ 30ps

ÍNFŃ

erc

UFSD

- Segmentable electrodes:
- Performances maintained at fluences $\phi > 10^{15} n_{eg}/cm^2$

Low Gain Avalanche Diode (LGAD)

Principle:

Add to n-on-p Silicon sensor a locally enriched p-layer $(\sim 10^{16} \text{ atoms/cm}^3)$ below the junction which increases the E-field so that charge multiplication with moderate gain of 10-50 occurs without breakdown.

High Doping Concentration equal High Field

Ultra Fast Silicon Detector (UFSD) is a thin LGAD $(\sim 50 \mu m \text{ thick})$ optimized to achieve a time resolution of $\sim 30 \text{ps}$

Conclusion

- > Ultra-Fast Silicon Detectors are being realized in form of thin Low-gain Avalanche Diodes
- **Radiation hardness improved by co-implantation of carbon into the gain layer**
- > The interplay of acceptor removal and the capability to recover the effect of fluence with Bias will determine the more radiation resistance designs.
- \succ 16-17µm is the minimum inter-pads distance measured in multi-pad sensors
- > Trench isolated and Resistive AC-coupling detectors are the two technological solution to improve the inactive inter-pad region in multi-pad sensors

* Corresponding author: Marco Ferrero, INFN Torino, marco.ferrero@to.infn.it

Acknowledgments

U.S. Department of Energy grant number DE-SC0010107

Dipartimenti di Eccellenza, Univ. of Torino (ex L. 232/2016, art. 1, cc. 314, 337)