

A multichannel front-end readout ASIC for high flux and high time resolution applications with UFSD

By Jonhatan Olave

F.Fausti, N. Cartiglia, R. Arcidiacono

Topical Seminar on Innovative Particle and Radiation Detectors

OUTLINE

- 1 Motivation
- 2 Picosecond time resolution: what is needed?
- 3 Picosecond ASICs
- 4 The FAST prototypes
- 5 Simulation and first silicon results
- 6 Conclusions and future plans

1/6 Motivation

Picosecond time resolution in High Energy Physics

Why picosecond time resolution is needed?

- At HL-LHC are expected 150-200 events per bunch crossing
- The reconstruction of time information allows to distinguish among events overlapped in space
- Timing is included in future experiments in different ways:
 - Timing layers
 - 4D detectors: timing is measured for each point along the track
- In medical applications: PET (time resolution), proton therapy (high rates)

Picosecond time resolution

What is really needed?

Picosecond time resolution: what is needed?

(*) H. Sadrozinski et al, 4D tracking with ultra-fast silicon detectors, Reports on Progress in Physics, 2-

0136 1001-2018 enfinar on Innovative Particle and Radiation Detectors

Siena 17th October 2018

Picosecond time resolution: what is needed?

Fast front-end electronics

- Jitter is minimized minimizing noise and increasing the dV/dt term
- Noise can be minimized in case: T_{rise} ~ T_{collection}
- Noise depends on several factors like: sensor cap, bandwidth, front-end topology
- Electronics contribution: front-end, TDC and the time walk

F	ront end	TDC	Sensor	
$\sigma_t^2 =$	$\left(\frac{N}{\frac{dV}{dt}}\right)^2 +$	$\left(\frac{\delta_{Bin}}{\sqrt{12}}\right)^2$	$+ \sigma_{Time\ Walk}^2$	

- The contribution from TDC is very small compared to the other terms
- Time walk can be reduced by using CFD or it can be corrected offline with particular techniques
- Going to the transistor level, time resolution is technology dependent

Picosecond ASICs

State of the art

Examples of fast front end electronics

ALTIROCO (OMEGA)

NINO (CERN)

PETIROC2 (OMEGA)

TOFFEE (TORINO)

TOFHIR (LIP)

Sensor: LGAD 3.4 pF

TR = 48 ps

Power = 5 mW/ch

Qin= 3fC - 30fC

CHs: 8

Tech: CMOS 0.18um

Sensor: SiPM Jitter = 10 ps

Dower - 27 m\/

Power = 27 mW/ch

Qin= 30 fC - 2 pC

CHs: 8

Tech: CMOS 0.25um

Sensor: SiPM

TR = 20-30 ps

Power= 6 mW/CH

Qin= 160 fC-400pC

CHs: 32

Tech: SiGe 0.35um

Sensor: LGAD 3/6 pF

TR = 50 ps

Power= 12 mW/ch

Qin= 3fC-30fC

CHs: 8

Tech: CMOS 0.11um

Sensor: SiPM TR = 30 ps

Power= 8 mW/ch

CHs: 16

Tech: CMOS 0.11um

It's quite difficult to combine the requiments of timing with sensor size and power

The FAST prototypes

General ASICs description

ASICs developed for applications with UFSD

Developed

@ INFN-Torino

4	1
_	_
Σ	_
\vdash	
•	ı
Ŀ	_

ASIC	Application	#ch	mm²	mW/ch	technology	FoM	Production
TOFFEE	Timing	8	3.6x2.5	20	110nm	45 ps (8 fC MIP)	2016
ABACUS	Single ion counting	24	5x2	15	110nm	3-130 fC Qin @ 100 MHz	2018
FAST	Timing and counting	20	5x1.7	3	110nm	25 ps Jitter (8 fC MIP)	July 2019

- **FoM**: picosecond time resolution and single ion detection at high rates (e.g. particle therapy applications)
- Main challenges: low power budget (<1.5 mW/Ch) and large sensor capacitance (6pF)

The FAST prototypes

Specifications

Channels number	20	
FAST flavors	Regular, EVO1, EVO2	
Operation Voltage	1.2 V	
Size	1.6 × 5 mm ²	
Sensor Cap	2-6 pF	
SNR	60	
RMS Noise	~ 0.7 mV	
Power consumption	< 2 mW/CH	
Time Walk correction	ToA, Tot	
MPV input signal	8fC	
Nominal input dynamic range	1 fC - 60 fC	

- A set of 3 ASICs has been produced in a MPW (07/2019)
- The flavours differ on the front-end amplifiers used
- The same IO-ring is used → the same PCB
- Each ASIC implements 20 channels

MPW

- Three architectures
- Power limited to 1.5 mW/CH
- Designed for 1 proton MIP in 50 μm thick UFSD sensor
- Sensor cap: 1 pF 6 pF

- Three architectures
- Power limited to 1.5 mW/CH
- Designed for 1 proton MIP in50 μm thick UFSD sensor
- Sensor cap: 1 pF 6 pF

EVO

- Larger bandwidth: ~ 400 MHz
- Gain: ~31 mV/fC (8 regulations)
- Noise: ~640 e-
- Power consumption: ~1.2mW/CH
- SNR(MIP): ~75
- Max hit rate: 300 MHz
- AC coupling to reduce mismatch
- 2 topologies: standard CMOS & RF

REGULAR

- Limited bandwidth to 100 MHz
- Gain: ~ 60 mV/fC
- Noise: ~310 e-
- Power consumption: ~1.2mW/CH
- SNR (MIP): ~ 160
- Max hit rate: 50 MHz

- Designed for 1 proton MIP in
 50 µm thick UFSD sensor
- Sensor cap: 1 pF 6 pF

- Two stage leading-edge differential discriminator
- Power < 0.6 mW/CH
- time walk
 - → offline corrected

Ancillary circuitry

- Test Pulse injection system: a global register of 6 bits is used to inject charge from 0.3 fC to 18 fC
- Selectable gain (EVO) or peaking time (REG): 3 bits/5bits used to select 8 different gains in EVO or for the peaking time tuning in REG. The last regulation is meant to minimize noise
- Local threshold regulation: the threshold can be locally regulated up to 30 mV with 6 bits DAC
- Pulse width regulation: It allows to add a fixed Δt to the pulse duration.

Simulations and silicon results

Front-end output and jitter

- Analog output (amplitudes and duration) changes with the C_{det}
- Amplifiers are designed to reach 30 ps with 6 pF UFSD sensor
- Sensor cap

Time resolution Max rate

itter vs C_{det}

FE output (2)

Vout vs gain

jitter and rate vs gain

Gain [mV/fC]	Amplitude [mV]	Jitter [ps]	Noise [e-]	Max rate [MHz]
26	211	19.8	779	300
34	274	18.5	610	227
44	352	19.8	493	128

- Gain does not affect significantly the timing performances
- Generally noise decreases with gain
- Gain

max rate

Front-end outputs comparison

Dependency from input charge

- 1 proton MIP release Q in silicon according to the Landau distribution
- LE-discriminator is used, ToA and then also jitter depend on $Q_{in} \rightarrow a$ corretion is needed

Front-end outputs comparison

Dependency from input charge

- 1 proton MIP release Q in silicon according to the Landau distribution
- LE-discriminator is used, ToA and then also jitter depend on $Q_{in} \rightarrow a$ corretion is needed

Front-end outputs comparison

Dependency from input charge

Smaller is the sensor, smaller is the jitter

- 1 proton MIP release Q in silicon according to the Landau distribution
- LE-discriminator is used, ToA and then also jitter depend on $Q_{in} \rightarrow a$ corretion is needed

Time resolution simulations

System level simulation

$$\sigma_t^2 = \sigma_{LANDAU\ NOISE}^2 + \sigma_{DISTORTION}^2 + \sigma_{JITTER}^2 + \sigma_{TOC}^2 + \sigma_{TIME\ WALK}^2$$

- Simulations include effects on silicon like Landau noise and signal distorsion (Weightfield2)
- Weightfield2 in combination with EDA tools to simulate the entire system

Weightfield

Skill language

EDA tools

What is included in this simulations?

- Landau distributed input signal
- Transient noise simulations
- R-C-CC parasitics included
- 2 different tools used for the parasitic extraction

- Time walk is corrected offline
- The TDC contributes with a systematic effect

Time resolution vs sensor area and thickness

Study done playing with three important parameters:

→ Sensor thickness: 35 µm, 55 µm, 75 µm

 \rightarrow Sensor geometry: 1x1 mm², 1.3x1.3 mm² and 1x3 mm²

→ **Front-end**: REGULAR, EVO1 and EVO2

Time resolution vs sensor area and thickness

Study done playing with three important parameters:

→ Sensor thickness: 35 μm, 55 μm, 75 μm

 \rightarrow Sensor geometry: 1x1 mm², 1.3x1.3 mm² and 1x3 mm²

→ Front-end: REGULAR, EVO1 and EVO2

Time resolution with irradiated sensor

- The effect of radiation in silicon affects the collected charge. This effect is taken into account
- Time resolution for non-irradiated sensors is around 30 ps
- EVOs measure always time more precicely than REG
- FAST + FBK allows to maintain a time resolution below 50 ps up to $1x10^{15}$ n_{eq}/cm^2
- Leakage current is not included in this simulations

First silicon results

Preliminary results

Custom board for FAST

- Number of PADs: 140 (46 for the POWER)
- Particular attention during the design to reduce parasitics:
 - → wire bonding lenght <0.5 cm
 - → wire diameter of 25 µm
 - → 2 bondings/PAD can be done

First basic setup with FAST

- FAST prototypes delivered on October 2019
- A general purpose board has been used for the first basic tests
- Connection for basic tests:

Power lines: 1.2 V (ANA and DIG) and 2.5 V (IO)

Biases: I & V

IN/OUT of a channel

Power consumption

Domain	Expected	Measured
Anag & Dig 1.2V	62 mA	60 mA
IO 2.5 V	18 mA	20 mA

Test with charge injection

- A small carrier board is used to mount C_{inj} and a SMA connector
- Vth is provided by one pin on the PCB

- First threshold scan shows a peak-to-peak noise
 of 10 mV in good agreement with simulations
- The first test allows to see that the entire chain is propertly working
- The system has a lot of antennas (to be optimized), so interference should be reduced
- The setup is enough to test some block of FAST but not to measure time resolution

Voltage response to a injected pulse

Conclusions and future steps

- FAST prototypes have been designed in CMOS 110 nm technology exploring three front-end amplifiers and they have been received on October 2019
- Several simulations of the readout electronics coupled with the sensor have been carried out including the most important contribution in time resolution. Results are very promising and fit the 30 ps time resolution also with 6 pF sensor
- A custom PCB has been designed taking into account important design choices for high precision time measurements. It will be available in few weeks
- A very basic setup has been used to power on the ASICs and this has been used to measure power consumption as expected by simulation and noise. The setup has been used to test all the bocks of one channel by means the injection of a signal
- For the future:
 - Improve the system to test other blocks like the digital logic
 - DAQ is based in LabView and an Xilinx FPGA
 - FAST characterizaion with UFSD sensors by using laser sources, active sources
 - A test beam is planned on 2020

We kindly acknowledge the UFSD group for the support and the following funding agency: Horizon 2020 Grant URC 669529 Ministero degli Affari Esteri, Italy, MAE

Thank you for your attention

Backup slides

Custom PCB for FAST

The technology choice in timing applications

Broad-band amplifier

$$\sigma^{J}_{t} = \frac{C_{d}}{Q_{in}} \sqrt{\frac{2KT}{g_{m1}} t_{d}}$$

- Jitter depends on the **trasconductance** g_m
- g_m in general is not a technological parameter, but it can be consider a good parameter to compare different technologies fixing some parameters like power consumption
- The comparison shows that fixing the power consumption to 1 mW, the gm is higher in 110 nm CMOS technology

Comparison between CMOS tecnologies

Scheme for wire bonding

Jitter vs input charge in case of extra power

FAST REG FAST EVO1

ToA

- \succ The time resolution in this condition is 26 27 ps. The optimum for the
- \succ More than 50 runs are required to estimate the resolution with good acc
- Wire bonding is modeled by means of an inductance of 2 nH (worse case)

Jitter vs threshold

Transient noise with R-C-CC-L parasitics

Front-end gain comparison

Amplitude vs Charge

ASIC for UFSD sensors: TOFFEE

 Climatic charmber used to reduce external interference

Sensors depleted with ~200

ASIC for UFSD sensors: ABACUS

Active area extension:

Some examples from test beams

CMS HGCAL:

PIN diode thickness 300 µm A=25 mm2

Cd = 8 pF en = 1 nV/
$$\sqrt{\text{Hz}}$$
 td = 3 ns σ = 420 ps/Q(fC)

$$1 \text{ MIP} = 3.8 \text{ fC} => \sigma = 110 \text{ ps} / \# \text{MIP}$$

~200 ps measured

ATLAS HGTD:

LGAD diode thickness 50 µm A= 2 mm2 G = 10

Cd = 2 pF en = 2 nV/
$$\sqrt{\text{Hz}}$$
 td = 0.5 ns σ = 50 ps/Q(fC)

$$1 \text{ MIP} = 5 \text{ fC } (G=10) => \sigma = 10 \text{ ps}/\#\text{MIP}$$

~40 ps measured

NA62 tracker:

PIN diode thickness 300 µm, A=0.09 mm2

Cd = 0.1 pF en = 11 nV/
$$\sqrt{\text{Hz}}$$
 td = 3 ns σ = 60 ps/Q(fC)

1 MIP = 3 fC =>
$$\sigma$$
 = 20 ps/#MIP

~60 ps measured

Threshold voltage generation

The channel of FAST

Power distribution: vdd, gnd, sub

