

A multichannel front-end readout ASIC for high flux and high time resolution applications with UFSD

By Jonhatan Olave

F.Fausti, N. Cartiglia, R. Arcidiacono

Topical Seminar on Innovative Particle and Radiation Detectors

Siena 17th October 2019

OUTLINE

- **Motivation** 1
- Picosecond time resolution: what is needed? 2
- Picosecond ASICs 3
- The FAST prototypes 4
- Simulation and first silicon results 5
- Conclusions and future plans 6

Picosecond time resolution in High Energy Physics

Why picosecond time resolution is needed?

- At HL-LHC are expected**150-200 events per bunch crossing**
- The reconstruction of time information allows to distinguish among events overlapped in space
- Timing is included in future experiments in different ways:

1

- **Timing layers**
- **4D detectors:** timing is measured for each point along the track
- In medical applications: PET (time resolution), proton therapy (high rates)

2/6 Picosecond time resolution

What is really needed?

Picosecond time resolution: what is needed?

1 2

15th Topical Seminar on Innovative Particle and Radiation Detectors | Jonhatan Olave | Siena 17th October 2018 026101-2018 (*) H. Sadrozinski et al, *4D tracking with ultra-fast silicon detectors*, Reports on Progress in Physics, 2-

Picosecond time resolution: what is needed?

Fast front-end electronics

Jitter is minimized minimizing noise and increasing the dV/dt term

1 2

- Noise can be minimized in case: T_{rise} ~ $T_{collection}$
- Noise depends on several factors like: **sensor cap, bandwidth, front-end topology**
- Electronics contribution: front-end, TDC and the time walk

- The contribution from TDC is very small compared to the other terms
- **Time walk** can be reduced by using **CFD** or it can be corrected offline with particular techniques
- Going to the transistor level, time resolution is technology dependent

State of the art

Examples of fast front end electronics

1 2 3

It's quite difficult to combine the requiments of timing with sensor size and power

General ASICs description

ASICs developed for applications with UFSD

1 2 3 4

E
H \blacksquare

- **FoM**: picosecond time resolution and single ion detection at high rates (e.g. particle therapy applications)
- **Main challenges**: low power budget (<1.5 mW/Ch) and large sensor capacitance (6pF)

The FAST prototypes

1 2 3 4

Specifications

- A set of 3 ASICs has been produced in a **MPW** (07/2019)
- The flavours differ on the front-end amplifiers used
- The same IO-ring is used \rightarrow the **same PCB**
- Each ASIC implements 20 channels

MPW

1 2 3 4 The channel

- **Three** architectures
- Power limited to **1.5 mW/CH**
- Designed for **1 proton MIP in 50 m** thick UFSD sensor
- Sensor cap: **1 pF – 6 pF**

1 2 3 4

The very front end

- **Three** architectures
- Power limited to **1.5 mW/CH**
- Designed for **1 proton MIP in 50 m** thick UFSD sensor
- Sensor cap: **1 pF – 6 pF**

EVO

- Larger bandwidth: ~ 400 MHz
- Gain: ~ 31 mV/fC (8 regulations)
- Noise: ~640 e-
- Power consumption: ~1.2mW/CH
- SNR(MIP): ~75
- Max hit rate: 300 MHz
- AC coupling to reduce mismatch
- 2 topologies: standard CMOS & RF

REGULAR

- Limited bandwidth to 100 MHz
- Gain: \sim 60 mV/fC
- Noise: ~310 e-
- Power consumption: ~1.2mW/CH
- SNR (MIP): \sim 160
- Max hit rate: 50 MHz

1 2 3 4

1 2 3 4

Pulse width regulator

- Pulse duration(MPV): **2-4 ns**
- This block can increase a regulated Δt to this duration to make it compatible with **commercial TDCs**

1 2 3 4

1 2 3 4

Ancillary circuitry

- **Test Pulse injection system:** a global register of 6 bits is used to inject charge from 0.3 fC to 18 fC
- **Selectable gain (EVO) or peaking time (REG):** 3 bits/5bits used to select 8 different gains in EVO or for the peaking time tuning in REG. The last regulation is meant to minimize noise
- **Local threshold regulation:** the threshold can be locally regulated up to 30 mV with 6 bits DAC
- **Pulse width regulation:** It allows to add a fixed Δt to the pulse duration.

Simulations and silicon results 5/6

Front-end output and jitter

1 2 3 4 5

FE output (2)

1 2 3 4 5

Vout vs gain

jitter and rate vs gain

- Gain does not affect significantly the timing performances
- Generally noise decreases with gain

Front-end outputs comparison

1 2 3 4 5

Dependency from input charge

- 1 proton MIP release Q in silicon according to **the Landau distribution**
- LE-discriminator is used, ToA and then also jitter depend on $Q_{in} \rightarrow a$ corretion is needed

11

Front-end outputs comparison

1 2 3 4 5

Dependency from input charge

- 1 proton MIP release Q in silicon according to **the Landau distribution**
- LE-discriminator is used, ToA and then also jitter depend on $Q_{in} \rightarrow a$ corretion is needed

Front-end outputs comparison

1 2 3 4 5

Dependency from input charge

Smaller is the sensor, smaller is the jitter

- 1 proton MIP release Q in silicon according to **the Landau distribution**
- LE-discriminator is used, ToA and then also jitter depend on $Q_{in} \rightarrow a$ corretion is needed

Time resolution simulations

System level simulation

$$
\sigma_t^2 = \sigma_{LANDAU\ NOISE}^2 + \sigma_{DISTORTION}^2 + \sigma_{JITTER}^2 + \sigma_{TDC}^2 + \sigma_{TIME\ WALK}^2
$$

1 2 3 4 5

• **Simulations include effects on silicon** like Landau noise and signal distorsion (Weightfield2) • Weightfield2 in combination with EDA tools to simulate the entire system

Weightfield EDA tools

What is included in this simulations?

- Landau distributed input signal
- Transient noise simulations
- R-C-CC parasitics included
- 2 different tools used for the parasitic extraction

- Time walk is corrected offline
- The TDC contributes with a systematic effect

Time resolution vs sensor area and thickness

1 2 3 4 5

- Study done playing with three important parameters:
	- \rightarrow **Sensor thickness**: 35 µm, 55 µm, 75 µm
	- \rightarrow **Sensor geometry**: 1x1 mm², 1.3x1.3 mm² and 1x3 mm²
	- → **Front-end**: REGULAR, EVO1 and EVO2

Time resolution vs sensor area and thickness

1 2 3 4 5

- Study done playing with three important parameters:
	- \rightarrow **Sensor thickness**: 35 µm, 55 µm, 75 µm
	- \rightarrow **Sensor geometry**: 1x1 mm², 1.3x1.3 mm² and 1x3 mm²
	- → **Front-end**: REGULAR, EVO1 and EVO2

Time resolution with irradiated sensor

1 2 3 4 5

- The effect of radiation in silicon affects the collected charge. This effect is taken into account
- **Time resolution for non-irradiated sensors** is around **30 ps**
- EVOs measure always time more precicely than REG
- FAST + FBK allows to maintain a time resolution below 50 ps up to 1×10^{15} n_{eq}/cm²
- Leakage current is not included in this simulations

Preliminary results

Custom board for FAST

1 2 3 4 5

First basic setup with FAST

1 2 3 4 5

- FAST prototypes delivered on October ²⁰¹⁹
- A general purpose board has been used for the first basic tests
- Connection for basic tests: Power lines: 1.2 V (ANA and DIG) and 2.5 V (IO) Biases: I & V IN/OUT of a channel

Power consumption

Test with charge injection

1 2 3 4 5

OUT $\frac{1}{\sqrt{2}}$ **FE DISC IN Cinj** Pulse generator $\begin{matrix} c_{\text{in}} & \text{I} \end{matrix}$ Channel $\begin{matrix} \text{out} & \text{oscilloscope} \end{matrix}$

- A small carrier board is used to mount C_{ini} and a SMA connector
- Vth is provided by one pin on the PCB
- First threshold scan shows a **peak-to-peak noise of 10 mV** in good agreement with simulations
- The first test allows to see that the entire chain is propertly working
- The system has a lot of **antennas** (to be optimized), so interference should be reduced
- The setup is enough to test some block of FAST but not to measure time resolution

Voltage response to a injected pulse

Conclusions and future steps

- FAST prototypes have been designed in CMOS 110 nm technology exploring **three front-end amplifiers** and they have been received on **October 2019**
- Several **simulations** of the readout electronics coupled with the sensor have been carried out **including the most important contribution in time resolution**. Results are very promising and fit the **30 ps time resolution also with 6 pF sensor**
- A **custom PCB has been designed** taking into account important design choices for high precision time measurements. It will be available in few weeks
- A very basic setup has been used to power on the ASICs and this has been used to measure **power consumption** as expected by simulation and **noise.** The setup has been used to test all the bocks of one channel by means the injection of a signal
- For the future:

6/6

- **- Improve the system** to test other blocks like the digital logic
- **- DAQ** is based in LabView and an Xilinx FPGA
- **- FAST characterizaion** with UFSD sensors by using laser sources, active sources
- A test beam is planned on 2020

We kindly acknowledge the UFSD group for the support and the following funding agency: Horizon 2020 Grant URC 669529 Ministero degli Affari Esteri, Italy, MAE

Thank you for your attention

Backup slides

1 2 3 4 5 6 7 8 Custom PCB for FAST

The technology choice in timing applications

1 2

- **Broad-band amplifier** Jitter depends on the **trasconductance** g_m
	- g_m in general is not a technological parameter, but it can be consider a good parameter to compare different tecnologies fixing some parameters like power consumption
	- The comparison shows that fixing the power consumption to 1 mW, the gm is higher in 110 nm CMOS technology

Comparison between CMOS tecnologies

Jitter vs input charge in case of extra power

1 2 3 4 5

FAST REG FAST EVO1

 \triangleright The time resolution in this condition is 26 - 27 ps. The optimum for the \triangleright More than 50 runs are required to estimate the resolution with good accu \triangleright Wire bonding is modeled by means of an inductance of 2 nH (worse case)

Jitter vs threshold

1 2 3 4 5

Transient noise with R-C-CC-L parasitics

1 2 3

Front-end gain comparison

Silicon detectors Amplitude vs Charge

1

ASIC for UFSD sensors: TOFFEE

1

- ❖ Direct connection between CT-PPS module and the ASIC
- ❖ Climatic charmber used to reduce external interference
- ◆ Sensors depleted with $~200$

ASIC for UFSD sensors: ABACUS

Active area extension:

1

Some examples from test beams

CMS HGCAL:

PIN diode thickness 300 μm A=25 mm2

Cd = 8 pF en = 1 nV/ \sqrt{Hz} td = 3 ns σ = 420 ps/ \mathbb{Q} (fC)

1 MIP = 3.8 fC => σ = 110 ps/#MIP

1

ATLAS HGTD:

LGAD diode thickness 50 μ m A= 2 mm2 G = 10

Cd = 2 pF en = 2 nV/ \sqrt{Hz} td = 0.5 ns σ = 50 ps/ $\mathcal{Q}(fC)$

1 MIP = 5 fC (G=10) => σ = 10 ps/#MIP

150 NA62 tracker:

PIN diode thickness 300 μm, A=0.09 mm2

Cd = 0.1 pF en = 11 nV/ \sqrt{Hz} td = 3 ns σ = 60 ps/Q(fC)

1 MIP = 3 fC => σ = 20 ps/#MIP

~200 ps measured

~40 ps measured

~60 ps measured

Threshold voltage generation

The channel of FAST

Power distribution: vdd, gnd, sub

15th Topical Seminar on Innovative Particle and Radiation Detectors | Jonhatan Olave | Siena 17th October 2018

Siena 17th October 2018