

R&D studies on C₃H₂F₄-based mixtures with low environmental impact for Resistive Plate Chambers

<u>A. Bianchi</u>*, S. Delsanto, P. Dupieux, A. Ferretti, M. Gagliardi, B. Joly, S. P. Manen, M. Marchisone, L. Micheletti, A. Rosano and E. Vercellin

*INFN and University of Torino | antonio.bianchi@unito.it

IPRD2019

Siena — 17th October 2019

Outline

Motivation for R&D studies:

→ goal: eco-friendly gas mixture for the ALICE muon RPCs

Characterization of mixtures with C₃H₂F₄:

- → $C_3H_2F_4$ is tested as a replacement for $C_2H_2F_4$
- → $C_3H_2F_4$ -based mixtures are tested with addition of Ar, N₂, O₂, CO₂

• Identification of promising C₃H₂F₄-based mixtures and CO₂:

- A. Bianchi et al, "Characterization of tetrafluoropropene-based gas mixtures for the Resistive Plate Chambers of the ALICE muon spectrometer", arXiv: 1907.03268 (submitted to JINST)
- Outlook: long-term stability tests under irradiation

ALICE Muon Spectrometer Trigger Chambers

The ALICE Muon Identifier

ALICE is a general-purpose heavy-ion experiment at CERN-LHC, studying the Quark-Gluon Plasma. Heavy-flavors and quarkonia are studied via their muonic decay channels with the ALICE muon spectrometer at forward rapidity (2.5 < y < 4).

RPC sketch:

ALICE-muon RPCs have shown stable operation and an efficiency greater than 98% from the beginning of Run1 up to now (integrated charge of ~10 mC/cm²). They are operating in maxi-avalanche mode at ~10.3 kV (ADULT FE) with 89.7% C₂H₂F₄, 10% *i*-C₄H₁₀ and 0.3% SF₆. The present gas mixture has a GWP of 1351.

Global Warming Potential (GWP): is the relative measure of how much heat a greenhouse gas traps in the atmosphere. $GWP_{CO2} = 1$ by definition

Motivation

Motivation for R&D studies on new gas mixtures for the forthcoming Muon Identifier at ALICE:

- reduce greenhouse gas emissions in the atmosphere
- cost saving: $C_2H_2F_4$ is being phased out by EU regulations \rightarrow possible rise of prices and limited future availability

Properties of C₃H₂F₄

95% of the total GWP of the ALICE mixture is due to the presence of $C_2H_2F_4$, therefore:

Tetrafluoropropene C₃H₂F₄ (HFO1234ze(E)):

- HFO1234ze(E) is not flammable at room temperature and its GWP = 7*
- Products of the atmospheric oxidation of HFO1234ze(E) have negligible environmental impact
 - \rightarrow Javadi, M. S., et al., Atmospheric Chemistry and Physics, 2008
- $N_p = \sim 90/cm$ and $E_{ion} = \sim 9 \text{ eV}$
 - \rightarrow simulation by Saviano, G., et al., *JINST* 13.03, 2018
- the strong electron attachment makes C₃H₂F₄ a promising gas for electric insulation
 - → Rabie M., et al., *Environmental science & technology* 52.2, 2018
- since several parameters are unknown (electron collision cross sections, the photon absorption spectrum, etc), no possibility to implement reliable simulations (for now)

*5th IPCC has revised this value: GWP < 1

Effective ionization rate coefficient as a function of the reduce electric field:

Pressure dependence of k_{eff} is a typical indication of three-body attachment

Experimental set-up

R&D studies on eco-friendly gas mixtures:

- small-size (50 x 50 x 0.2 cm³) RPC inside a Faraday cage
- trigger: three scintillators coupled with photomultipliers
- HV is applied with temperature and pressure correction (p₀ = 1000 mbar and T₀ = 20 °C)
- possibility to mix at maximum 4 different gases with H_2O vapor
- signals in read-out strips (2 x 50 cm²) discriminated by FEERIC front-end electronics and acquired by oscilloscope


```
Dupieux P. et al., Upgrade of the ALICE muon trigger electronics, JINST 9.09 (2014)
```

 FEERIC amplifies signals (input charge range = 0.1÷1 pC): this allows one to operate in pure avalanche mode with a lower charge per hit (by a factor 3÷5)

total trigger area: ~6 x 6 cm²

Characterization with ALICE mixture

Efficiency and large signal probability with ALICE mixture:

C₃H₂F₄-based mixtures

Mixture $C_2H_2F_4/iC_4H_{10}/SF_6$ (89.7/10.0/0.3):

- efficiency
- streamer probability

Mixture $C_3H_2F_4$ (100.0):

efficiency streamer probability

100% $C_3H_2F_4$: efficiency is ~0% at HV < 14 kV \rightarrow maximum HV value of power supply is 15 kV as well as HV cables and connectors are compatible with voltages up to 15 kV → would very likely result in current instabilities and high detector noise

If C₃H₂F₄ is diluted, efficiency curves are shifted to lower HV values \rightarrow tests with Ar, N₂, O₂, CO₂

efficiency Mixture $C_3H_2F_4$ (100.0): efficiency Mixture C₃H₂F₄/Ar (45.0/55.0): efficiency Х Mixture $C_3H_2F_4/N_2$ (45.0/55.0): efficiency

Mixture C₃H₂F₄/O₂ (45.0/55.0):

efficiency Mixture C₃H₂F₄/CO₂ (45.0/55.0):

efficiency

Gas mixtures are selected taking into account:

- streamer probability
- average induced charge
- current stability

45% C₃H₂F₄ + 55% Ar

$45\% C_3H_2F_4 + 55\% N_2$

45% C₃H₂F₄ + 55% O₂

45% C₃H₂F₄ + 55% CO₂

Variation of C₃H₂F₄/CO₂ and *i*-C₄H₁₀/CO₂

The addition of C₃H₂F₄ against CO₂ shifts the WP to higher HV values but decreases the streamer probability

The addition of more than 10% *i*-C₄H₁₀ against CO₂ shifts the WP to higher HV values but reduces streamers

Addition of SF₆

The addition of SF_6 reduces the streamer probability

→ Streamer suppression due to the use of SF₆ is already well known in $C_2H_2F_4$ -based mixtures

Studies of gas mixtures with C₃H₂F₄/CO₂/*i*-C₄H₁₀/SF₆

The addition of SF₆ shifts the WP to higher HV values but decreases the streamer probability

The shift of the working points is not monotonic versus the ratio $CO_2/i-C_4H_{10}$

The addition of *i*-C₄H₁₀ against CO₂ does not seem to decrease the streamer probability

Promising gas mixtures with low GWP

Mixture C₂H₂F₄/iC₄H₁₀/SF₆ (89.7/10.0/0.3):

- efficiency
- large signal probability

Mixture $CO_2/C_3H_2F_4/iC_4H_{10}/SF_6$ (50.0/39.7/10.0/0.3):

- efficiency
- large signal probability

Mixture CO₂/C₃H₂F₄/iC₄H₁₀/SF₆ (50.0/39.0/10.0/1.0):

- efficiency
- large signal probability

50% CO₂, 39.7% C₃H₂F₄, 10% *i***-C₄H₁₀, 0.3% SF**₆:

- GWP: 72 (~20 times lower than the GWP of ALICE mixture)
- working point is quite close to the working point of the ALICE RPCs during LHC Run 1 and Run 2
- the large signal probability is not as low as in the current ALICE mixture

50% CO₂, 39% C₃H₂F₄, 10% *i***-C₄H₁₀, 1% SF₆:**

- GWP: 232 (~5 times lower than the GWP of ALICE mixture)
- working point is higher (~1.5 kV)
- large signal probability is similar to the ALICE mixture, although slightly higher

Long-time stability tests at CERN-GIF++

ALICE RPC

ECOGAS collaboration: ALICE, ATLAS, CMS and CERN/EP-DT

➡ long-time stability tests on several promising C₃H₂F₄-based mixtures are already ongoing

Preparation of test at CERN-GIF++

Since concentrations of *i*-C4H10 (flammable) higher than 5% are not allowed at GIF++, we carry out the aging test with the gas mixture 50% CO₂, 45% C₃H₂F₄, 4% *i*-C₄H₁₀, 1% SF₆:

Conclusions and outlook

R&D on eco-friendly gas mixtures:

- → goal: to have a eco-friendly gas mixture (at least with a low GWP)
- \rightarrow C₃H₂F₄ is a possible candidate to substitute C₂H₂F₄, thanks to its low GWP

Characterization of mixtures with C₃H₂F₄:

- direct replacement of $C_2H_2F_4$ with $C_3H_2F_4$ is not possible (working point > 14 kV)
- strong dependence between the working point of the detector and the concentration of $C_3H_2F_4$
- the addition of Ar, N₂, O₂ is not suitable for ALICE-muon RPCs
- the addition of CO₂ to C₃H₂F₄-based mixtures is required to operate at lower voltages
- in $C_3H_2F_4$ -based mixtures with $CO_{2,}$ i- C_4H_{10} and SF_6 :
 - the increase of *i*-C₄H₁₀ against CO₂ does not seem to reduce the streamer probability with 1% SF₆
 - SF₆ turns out to play a crucial role in suppressing streamers in $C_3H_2F_4$ (as well as in $C_2H_2F_4$)
 - promising C₃H₂F₄/CO₂-based mixtures, found so far, with a GWP reduced by a factor 5÷20
 - details in arXiv: 1907.03268 (submitted to JINST)
- As next step, long-time stability tests are required to check:
 - $C_3H_2F_4$ tolerance to high particle flux
 - rate capability
 - long term performance (ageing issue)

