Black holes in string theory and gravitational wave observations

Bert Vercnocke
KU Leuven

Amsterdam, 12 November 2019
Why quantum modifications of GR horizon?
1. Why study black holes in string theory?

2. What is a black hole in string theory?

3. What are the observable consequences?
Outline

1. **Why** study black holes in string theory?

2. **What** is a black hole in string theory?

3. What are the **observable consequences**?
Why study black holes in string theory?

\[S_{BH} = \frac{k_B c^3}{\hbar G_N} A_H, \quad T_H = \frac{\text{surface gravity}}{2\pi} \]

[Bekenstein; Hawking; BH thermodynamics Bardeen, Hawking, Carter . . .]

QFT in a fixed GR background:

1. Evaporation → information paradox?
2. Entropy → microstates?
3. Singularity → Experience of infalling observer?
Why study black holes in string theory?

\[S_{BH} = \frac{k_B c^3}{\hbar G_N} A_H , \quad T_H = \frac{\text{surface gravity}}{2\pi} \]

[Bekenstein; Hawking; BH thermodynamics Bardeen, Hawking, Carter . . .]

QFT in a fixed GR background:

1. Evaporation → information paradox?
2. Entropy → microstates?
3. Singularity → Experience of infalling observer?

Resolution is QUANTUM gravitational in nature
Resolving the information paradox

Need to give up at least one of:

1. Unitarity
2. No high-entropy remnants
3. Effective Field Theory outside horizon (GR + QFT)
4. Quantum gravity corrections heavily suppressed near horizon
5. Or other hidden assumptions
Resolve information paradox?

Need to give up at least one of:

1. Effective Field Theory (GR + QFT) breaks down

2. Large quantum gravity corrections near horizon

Other assumptions for which we have theoretical motivations not to change (unitarity...)
Resolve information paradox?

Need to give up at least one of:
Some proposed resolutions from the string community

1. Effective Field Theory (GR + QFT) breaks down non-local interactions [Giddings], wormholes from entanglement [ER=EPR, Maldacena-Susskind]

2. Large quantum gravity corrections near horizon firewalls [AMPS ’13], fuzzballs [Mathur ’01 + many more]

Other assumptions for which we have theoretical motivations not to change (unitarity . . .)
observables in quantum mechanics depend on black hole microstate [Papadodimas-Raju ’15]
Ways to proceed

Bottom-up:

1) Effective field theory: [morning talks]
 - If violated, then we expect EFT to show the scale of new physics
 \[\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \ldots \]

2) Phenomenology—Exotic Compact Objects [Pani’s talk]
 - Investigate possible signatures of quantum modifications
Ways to proceed

Bottom-up:

1) Effective field theory: [morning talks]
 - If violated, then we expect EFT to show the scale of new physics
 \[\mathcal{L} = \mathcal{L}^{(0)} + \mathcal{L}^{(1)} + \mathcal{L}^{(2)} + \ldots \]

2) Phenomenology—Exotic Compact Objects [Pani’s talk]
 - Investigate possible signatures of quantum modifications

This talk:
 - Study black holes in string theory and see what we get
Outline

1. *Why* study black holes in string theory?

2. *What* is a black hole in string theory?

3. What are the *observable consequences*?
String theory

Framework for Quantum gravity and other forces

- Original idea: particles as excitations of strings

- “Exotic”: Higher dimensions, Supersymmetry

Black holes in string theory

Black holes from branes

- Make 6 dimensions small (compactification)
- Wrap branes on internal dimensions at one position in 4d
- Large number of branes: 4d black hole
Black holes in string theory

Black holes from branes

- Make 6 dimensions small (compactification)
- Wrap branes on internal dimensions at one position in 4d
- Large number of branes: 4d black hole

Microscopic understanding \rightarrow microstates?
Entropy from microstates

Thought experiment: “turn the knob” \[\text{[Sen '96, Strominger, Vafa '96, ...]}\]

\[S_{\text{micro}} = \log(N_{\text{micro}}) \quad \Leftrightarrow \quad S_{\text{macro}} = \frac{A_H}{4G_N}\]

GAUGE THEORY \[\Leftrightarrow\] classical GR (+ fields)
Main successes:

1) Black hole entropy from brane gauge theory

\[S_{BH} = k_B \ln N_{micro} \]

…by supersymmetry
Main successes:

1) Black hole entropy from brane gauge theory

\[S_{BH} = k_B \ln N_{\text{micro}} \]

... by supersymmetry

2) Holographic interpretation of spacetime: [’t Hooft’93, Susskind ’95]

- Gauge theory has lower dimension than gravitational theory
- Concrete realization: “AdS/CFT correspondence” [Maldacena ’97]
- Idea of ‘emergent spacetime’ permeates modern string theory
Gravitational interpretation of microstate
Gravitational interpretation of microstate

- Branes+strings can give gravitating objects the size of black holes.

- “Fuzzball programme” (mainly for 5d BHs)

- Could address also information paradox and singularity resolution

\[G_N \sim g_s^2 \text{ larger} \]
Outline

1. **Why** study black holes in string theory?

2. **What** is a black hole in string theory?

3. **What** are the **observable consequences**?
Statistical expectations for Kerr BH microstate

String theory cannot yet describe a Kerr microstate . . . what to expect?
Statistical expectations for Kerr BH microstate

String theory cannot yet describe a Kerr microstate . . . what to expect?

- Expectation values in **typical microstate** expected to be highly peaked around thermal expectation (= black hole) for **most observables**

[picture: http://www.science4all.org]
Statistical expectations for Kerr BH microstate

String theory cannot yet describe a Kerr microstate . . . what to expect?

- Expectation values in typical microstate expected to be highly peaked around thermal expectation (= black hole) for most observables

Hence microstate potentially hard to distinguish from Kerr BH
Look for most promising stringy observables

Binary black holes:

- GW echoes? [Dimitrov, Lemmens, Mayerson, Min, BV in progress]
- focus on quantum dynamics: e.g. in merger
 [Bena, Mayerson, Puhm, BV ’15, Hartle, Hertog ’17]
Look for most promising stringy observables

Binary black holes:

▶ GW echoes? [Dimitrov, Lemmens, Mayerson, Min, BV in progress]

▶ focus on quantum dynamics: e.g. in merger
 [Bena, Mayerson, Puhm, BV ’15, Hartle, Hertog ’17]

“Microstate geometries” as new black hole mimickers
[Hertog, (Kuechler), Lemmens, BV ’19 + in progress]
Look for most promising stringy observables

Binary black holes:

- **GW echoes?** [Dimitrov, Lemmens, Mayerson, Min, BV in progress]
- **GW echoes?** Focus on quantum **dynamics**: e.g. in merger
 [Bena, Mayerson, Puhm, BV ’15, Hartle, Hertog ’17]

“Microstate geometries” as new black hole mimickers
[Hertog, (Kuechler), Lemmens, BV ’19 + in progress]

Other hints of string theory:

- **Many dimensions → axions** [Charles, Scalisi, Tielemans, BV in progress]
- **Emergent nature of spacetime** [e.g. Verlinde, Zurek 19]
- **Contraints from string landscape** (primordial GW’s, PBHs…)