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Radiation field representativeness, homogeneity and penetration requirements

Homogeneity: Collimated beams versus mixed field

* Examples of “large” beams (up to ~60 x 60 cm?) covered in Daniel’s presentation
 CHARM: mixed-field facility in which very large areas (several meter range) are covered
with homogeneous radiation levels
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FLUKA simulation of CHARM TID map [A. Thornton, ATS Note 2016]
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Homogeneity: Collimated beams versus mixed field

* Similar situation for high-energy hadron fluence
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FLUKA simulation of CHARM High-Energy Hadron (HEH) map [A. Thornton, ATS Note 2016]
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Homogeneity: Collimated beams versus mixed field

D. Di Francesca (NSREC and IEEE TNS, 2018)
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Homogeneity: Collimated beams versus mixed field
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Penetration: Ranges in silicon — trade-off versus LET

Rangevs. LET

e “Low” LET:
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Penetration: proton and neutron spectra
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* Protons in trapped belts are highly penetrating in the mm aluminum range (e.g. 0.8 relative value after 7mm - shielding is much less

efficient than for TID)
* CHARM and Chiplr have much larger penetrations (e.g. 0.8 relative value reached at 5 and 10 cm respectively) due to larger energies

and strong neutron presence
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Penetration: mono-energetic protons

* For 200 MeV protons, inelastic interaction length
(e.g. 50cm in silicon) is significantly larger than range
(e.g. 14cm in silicon) therefore the effect of the
interaction with the material is dominated by dE/dx
losses (i.e. efficient degradation)

* Nuclear events however still have a visible impact on
the HEH penetration

RADSAGA
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Penetration: mono-energetic heavy ions

 For 1 GeV/n ions, inelastic interaction length in | | 1 v re (LESVn Te
silicon (8.3 cm) is shorter than range (14.7 cm)

* Hence, interaction with matter is dominated by
nuclear fragmentation, and (though not represented
in the figure) a significant amount of light
secondaries are produced, effectively changing the
nature of the radiation field
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Penetration: mono-energetic heavy ions

e Ultra-high energy test campaigns at CERN, with
heavy RADSAGA involvement (both as test campaign
support and users)

* Possibility of testing in air, with packaged parts and
multiple boards in parallel

* Main limitations:

* Beam fragmentation (beam instrumentation,
boards under test...)

* Low effective LET value (~¥10 MeVcm?/mg for
150 GeV/n lead beam)
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e Radiation field homogeneity for system-level testing

e Radiation field penetration for system-level testing

* Radiation field representativeness for system-level testing
* Conclusions
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Representativeness: spectral acceleration factor
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* Typically, SEE cross sections for space applications are expressed
as a function of energy (protons) or LET (ions) and folded with the 7
respective spectra in the operation application

* Directly comparing the particle energy spectra of testing and
application environments via an acceleration factor is also an
option (e.g. as is done in ground level applications with

m2-s-MeV)
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Representativeness: spectral acceleration factor

 Example of application of CHARM mixed-field data to in-obit SEL rate prediction (N. Kerboub,
RADECS 2018 and IEEE TNS)
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Representativeness: energy deposition phase space

* Asimilar approach (of comparing test versus operation spectra = 18? T CHARM() -18:
through an acceleration factor or SEE “mixed-field” cross section) =2 o - 230MeV || 3
can be applied in the deposited energy phase space, via Monte Sz 102 - l10* E
Carlo simulations and the definition of a sensitive volume & 181 i ‘10:2 ¢

* Not surprisingly, comparable particle energy spectra yield 8 10°} _18-7
comparable energy deposition distributions (e.g. CHARM versus B0 T T To?

LEO, but also applicable to 230 MeV mono-energetic protons) LET, (MeVcm? /mg)

* Good agreement between LEO SEE rate prediction based on

CHARM and that expected from traditional proton testing (mono- SRAM IRPP predicted SEE rate

Proba-11 (LEO) Alphasat (GEO)

energetic in 20-200 MeV range)
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Representativeness: energy deposition phase space

 The same approach can be applied to derive the heavy ion SEE —~ 10% ‘ . .3
rate based on proton and/or mixed field results :%j 10° H' oL giAﬁMéﬁ” 18-4

* The energy deposition curves closely fit to each other up to an ”g 10° - l10°
equivalent LET of roughly 10 MeVcm?/mg o 10" | 110 &
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able of both qualitatively and quantitatively representing heavy IS 10 ‘ | | {10”
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* For SEE cross sections with larger LET onsets (or thicker sensitive LET, (MeVom? /mg)
volumes), proton/mixed-field results can only be used as upper SRAM TRPP predicted SEE r
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bounds for heavy ion rate prediction
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Representativeness: energy deposition phase space

* When applied to neutron SEE testing, the energy
deposition description can be used to show that, for 1075
SEU (small sensitive volume, low LET onset), 14 MeV
neutrons are representative of atmospheric-like
neutrons, whereas for SEL (large sensitive volume and
LET onset) differences of a factor 30 and above are
obtained when comparing the two cross sections
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A. Coronetti, RADSAGA deliverable report

k“’ RADSAGA System Level Test Review — 12-13 November 2019, CERN

RADSAGA




Radiation field representativeness, homogeneity and penetration requirements

e Radiation field homogeneity for system-level testing

e Radiation field penetration for system-level testing

e Radiation field representativeness for system-level testing
* Conclusions

k“’ RADSAGA System Level Test Review — 12-13 November 2019, CERN




Radiation field representativeness, homogeneity and penetration requirements

Summary and conclusions

* Homogeneity:
« Spallation sources can provide highly homogeneous mixed radiation fields over several meter
distance, enabling testing of multiple components/boards, and full systems
* Asimilar experimental scenario with heavy ions instead of hadrons is not presently viable (laser-
driven plasma ion acceleration?)
* Penetration:
* For highly-energetic, neutron dominated radiation fields such as Chiplr and CHARM, very large
penetration (several cm range, using a 0.8 relative value as figure-of-merit) is achieved
* Highly-energetic ions can also have significant penetration values, but at the cm level, their
interaction with matter is dominated by nuclear reactions as opposed to dE/dx
* In addition, there is a strong tradeoff between penetration and LET
* Representativeness:
* Describing SEEs in the deposited energy phase space can contribute to efficiently establish links
between a broad variety of experimental and application environments
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