

System level testing in CHARM Facility

Salvatore Danzeca, Rudy Ferraro, EN/SMM/RME

RADSAGA System Level Test Review, CERN, Geneva 12 November 2019

Accelerator's Challenges

- A large number of COTS-based systems are exposed to the LHC radiation environments
- The reliability and the availability are a main concern for the CERN electronic equipment located in radiation areas
- The criticality of the equipment can be very high, the radiation effects can lead to:
 - **Beam Dumps** → Lost time for physics
 - LHC safety system failures → Part of the machine can be destroyed
- > In the LHC systems are affected by all radiation effects:
 - TID and DD:
 - → Affect system lifetime (permanent failure)
 - \rightarrow Same failure probability for all units
 - SEE:
 - \rightarrow Stochastic system failure rate
 - → Failure probability depends on number of systems

@ Courtesy of the TE/MPE Group

$$N_{SEE_Failure} = N * \sigma * fluence$$

Number of systems

Example: DQLPU = 530 units (Quench Protection unit system)

CERN RHA Guideline for COTS-based system

From component to system level qualification:

	Time							L Component lovel tester	
Phases	Phase 0	Functional Description/Blocks						- TID: Gamma (Co ₆₀)	
	Phase 1	ase 1 Radiation Environment							- DD: Neutrons
	Phase 2		System/Components Description						- SEL: Heavy lons
		Phase 3		Radiation tests - Commercial Off the shelf components test				- SEE: Thermal neutrons	
				Phase 4	System radiation test				System level tests
					Phase 5	Final Summary Installation Approval			- SEE+TID+DD: Mixed-Field
					Phase 6		Operation Follow up		
3							@ CERN RHA Guideline		

- Validation of radiation tolerance at system level before final production
- Identification of possible unpredicted system failure modes
- → System level tests performed at CHARM Facility

System level testing challenges

- > Main Cumulative Radiation Effects test challenges (TID+DD):
 - 1) Representativeness of the system degradation scenario(s):
 - → TID/DD Rate(s) similar to operation to reproduce combined TID+DD effects at system/circuit/IC level
 - AND representativeness of the DD spectra (Specially when different semiconductor materials embedded)
 → To avoid NIEL scaling dependency during system level test to keep (1) true.
- > Main SEE test challenges:
 - 3) Representativeness of the SEE spectra
 - Energy Distribution: System sensitive to thermal neutrons? Low energy protons? SEL from very energetic particles?
 - > **Particle Distribution**: High pions presence could impact the overall cross-section
 - 4) Assess very low cross-section (due to high number of systems in operation)
- General concerns:
 - 5) Good failure/degradation observability (measured test points, embedded diagnostic circuits etc...)
 - \rightarrow Failure mode prediction from component level behavior can be a difficult task

LHC: Particle Spectra (SEE)

- Intervals of interest:
 - Thermal Neutrons: Neutron capture
 - Intermediate energy neutrons: Low energy elastic/inelastic products
 - Low energy Charged hadrons: direct ionization (relevant for very sensitive technology)
 - High Energy Hadrons (HEH):
 Inelastic interactions

Why CHARM?

CHARM = **C**ERN **H**igh energy **A**cceleRator **M**ixed field facility

Main Mission: Radiation tests of electronic equipment and components in radiation environments similar to the ones of the accelerator

- > Large dimension of the irradiation room:
 - High number of single components
 - Large volumes electronic equipment
 - High number of system units
- > Numerous representative radiation fields:
 - Mixed-Particle-Energy: Tunnel & Shielded areas
 - TID, DD, soft and hard SEE testing
 - Direct beam exposure (proton beam 24 GeV or heavy ion beam ~6 GeV/n)

CHARM Facility

- Primary beam line delivered from PS in spills
- CHARM Beam line placed downstream to IRRAD

CHARM: Facility Configuration

- Primary 24 GeV proton beam impinge a target •
- Secondary radiation fields similar to the LHC radiation fields.

C – Concrete (1,4)

I – Iron (2,3)

Radiation field can be modulated with: •

@ FLUKA

CHARM: Spectra vs positions

CHARM: DD Spectra characteristics

CHARM: DD Spectra characteristics

CHARM: Operation

- The access is every Wednesday → An user run last minimum one week
- Up to two racks can be placed in the facility
- A single rack can fit several users
- The racks are brought inside by a robotic conveyer
- It automatically leaves the rack in position
- It reduces the **time of exposure** of the working people in the activated area
- An overhead conveyer allow testing small systems or sets of components in parallel of the main user
- The radiation levels (TID+DD+HEH+Th. Neutrons) are monitored on the rack on several positions by means of the CERN Radiation MONitoring (RadMON) systems.

- System: R2E LHC Electronic Power Converter (EPC)
- Function: Supply and control the current in all four power quadrants, for superconductive magnets
- Location: Shielded RR (Shielded) Areas
- Expected annual dose (HL-LHC): ~3 Gy/y Target Dose: 200 Gy
- > Objective of the campaign:
 - 1) Validate the 20 years of lifetime operation against DD and TID
 - 2) Identify Power Converter failure modes

> Test Protocol:

Power Module 3

Power Module 2

Power Module 1

Water Connection

Control & Protec Module 3

Control & Protec Module 2

Control & Protec Module 1

CHARM Interconnection Panel

- > Test plan:
 - Configuration: CuOOOO
 - **Position:** 10
 - #Irradiations:
 - Session 1: 1 Week, 1 system
 - Session 2: 1 Week, 1 system
 - Session 3: 2 weeks, 2 systems

@ From EDMS: 1851356

RADSAGA System Level Test Review – November 12, 2019

- → 02.08.2017 | Dose: 0 Gy | Start of the irradiation Position 10.
- 03.08.2017 | Dose: 30 Gy | 1st Failure of the converter The low part of four quadrant stage is deactivated
- → 03.08.2017 | Dose: 38 Gy | 2nd Failure of the converter The high part of the four quadrant stage is deactivated
- 07.08.2017 | Dose: 150 Gy | 3rd Failure of the converter The AC command is deactivated
- → 09.08.2017 | Dose: 0 Gy | Start of the irradiation Position 10.
- → 16.08.2017 | Dose: 349 Gy | End of the irradiation
- → 06.009.2017 | Dose: 0 Gy | Start of the irradiation Position 10.
- → 14.09.2017 | Dose: 320 Gy | Failure of power converter "AC Contactor Fault" is ON, and "4Q-V-LOOP Fault" is active. The AC contactor of the power module opens.
- → 26.07.2017 | Dose: 462 Gy | End of the irradiation

RUN1: Failed (1 system tested)

- Premature failure of the system
- Post-irradiation analysis revealed two failure modes:
 - 1) An underestimated TID-DD circuit effect (~ 35 Gy)
 - 2) High current leakage of an analog switch (~150 Gy)
- Circuits re-designed to increase their tolerance to degradation.

RUN2: Success (1 system tested)

- No permanent system failure observed up to 350 Gy.
- Systems overpassed largely the target.

RUN3: Success (2 systems tested)

 Systems suffered from the failure mode (1) but at 320 Gy and 420 Gy instead of ~35 Gy

Failure Mode: Fault detection circuit signal blocked to 0V (Fault detected)

Failure Cause: Impossible to drive the circuit output ON due to the combined degradation of the input/output BJTs, the optocoupler and the output MOSFET.

> Clear example of the need to have representative TID/DD ratio and DD spectra (for AlGaAs)

Solution: Modify the circuit to increase the current going to the base of the output bipolar transistor T2 \rightarrow Lower current from the optocoupler required to drive the transistor ON

@ From EDMS: 1851356

Conclusion

- LHC radiation environments present specific challenges in terms of radiation qualification
- These challenges impact the way the system level tests have to be performed:
 - Representative TID/DD rate and DD spectra required to ensure realistic system degradation responses
 - Representative particle spectra required to assess realistic SEE response (to thermal, intermediate hadron, high energy hadrons)
- The CHARM facility allows testing high number of components and systems in representative LHC environments
- A careful selection of the CHARM facility configuration allows dealing with most of the environmental challenges / requirements
- An example of system test performed at CHARM showed how system failure modes can be identified and mitigate thanks to system level test in realistic conditions

Thank you all for your attention! Questions?

RADSAGA System Level Test Review – November 12, 2019

R. Ferraro - System level testing in CHARM Facility

LHC: TID & DD levels distribution

LHC Spectra DD Characteristics

LHC Spectra DD characteristics obtained by combining LHC Spectra with particle NIELs

Considered Materials: GaAs, AlGaAs, InGaAs

- **Typical Spectra DD characteristics:**
- > Energy Distribution:
 - DD Normalized Reverse Integral (NRI)
 - DDH_{50%}, DDH_{10%}: Energy values for which the DD fluences contributes to 50% and 90% of the total DD.

LHC Spectra DD Characteristics

LHC Spectra DD characteristics obtained by combining LHC Spectra with particle NIELs

Considered Materials: GaAs, AlGaAs, InGaAs

- **Typical Spectra DD characteristics:**
- > Energy Distribution:
 - DD Normalized Reverse Integral (NRI)
 - DDH_{50%}, DDH_{10%}: Energy values for which the DD fluences contributes to 50% and 90% of the total DD.

Particle contribution to total DD:

- Si: Negligible proton/pion contributions
- GaAs/InGaAs/AlGaAs:
 - Proton / pion contributions decrease while shielding increase
- → characteristics to be reproduced during system level tests.

CHARM: TID-DD levels distribution

