

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721624

Board and system level testing in other RADSAGA facilities and beyond

Daniel Söderström

RADSAGA System Level Test Review

CERN, November 11-13, 2019

JYU. Since 1863. 12.11.2019

1

Outline

- Facility requirements for system level tests
- Example facilities
 - / Heavy ions
 - / Protons
 - / Neutrons
- Summary

Facility requirements for system level tests

- High beam penetration
 - / High energies
 - / Projectile properties
- Large beam size
 - / Large irradiation area
 - / Dependent on system and test mode

Range (mm) in Silicon

- lons
- For 10 cm range:

 200 MeV H
 400 MeV/n O
 600 MeV/n Ar
 900 MeV/n Kr

At very high energies, the particle range becomes limited by the inelastic interaction length.

https://www.bnl.gov/nsrl/userguide/let-range-plots.php

- Neutrons
 - / Thermal: ~9 cm MFP in Si
 - / 10 MeV: ~25 cm in water
 - Differs greatly with material, but generally long range

A. N. Caruso, The physics of solid-state neutron detector materials and geometries, Journal of physics. Condensed matter: an Institute of Physics journal, 2010, vol. 22 44, p. 443201

- Gammas
- ${}^{60}\text{Co}\,\gamma$ in Si: ~10 cm MFP / $I(x) = I_0 e^{-\mu x}$
 - $MFP = \frac{1}{\rho\mu}$
 - / (with suitable units)

Data from https://www.nist.gov/pml/xcom-photon-cross-sections-database

- Electrons
- Even if electrons are stopped, bremsstrahlung is present
- About 10 cm range in Si for 100 MeV electrons

Data from https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html

Beam sizes – Heavy-ion facilities

Heavy-ion facility	Beam size	Max energy (MeV/u)	Compliance with ESCC 25100	Cost of test per hour (ballpark)
NSRL	60x60 cm ² (typ. 20x20)	1500	Yes	~\$5700
RADEF	5x5 cm² (3x3 in air)	16.3	Yes	~800€
TAMU	4.5 cm diameter	40	Yes	~\$1000
KVI	3x3 cm ²	90	Yes	-
UCL	2.5 cm diameter	9.3	Yes	~800€
GANIL	Few cm diameter, sweeping beam	60	Yes	-
LBNL	Few cm diameter	30	Yes	~\$1600
GSI	1 cm diameter	2000	Yes	-

Beam sizes – Proton facilities

Proton facility	Beam size	Max energy (MeV)	Compliance with ESCC 25100	
NSRL	60x60 cm ² (typ. 20x20 cm ²)	2500	Yes	
KVI	12 cm diameter	184	Almost*	
RADEF	10 cm diameter	55	Almost*	
PSI PIF	9 cm diameter	230	Yes	
LBNL BASE	8 cm diameter	55	Almost*	
UCL	8 cm diameter	62	Almost*	
TRIUMF PIF	$7.5 \text{x} 7.5 \text{ cm}^2$	480	Yes	*** • 1 11
TAMU	4.5 cm diameter	45	Almost [*]	be delivered in
GSI	1 cm diameter	4500	Yes	the energy range 20-200 MeV

Beam sizes

- Bigger fields

 Point sources, ⁶⁰Co
 CHARM
 - / Reactors

Image from *Research Nuclear Reactor TAPIRO information sheet,* ENEA. 40 cm diameter Grand Horizontal irradiation channel. It has also the Grand Vertical Channel with 80-90 cm diameter.

NSRL – NASA Space Radiation Laboratory

Located in USA at Brookhaven National Laboratory

Much used for radiobiology testing

High-energy heavy ions and protons

Large beam size

Ion species

- Many ions from BNL booster
 - / Almost any ion possible, table present used ions so far
- Switching time 1.5 2 minutes
 - / (When pre-tuned for the new energy)
- Fluxes 10⁶-10¹¹ ions per spill

https://www.bnl.gov/nsrl/userguide/ beam-ion-species-and-energies.php

lon Species [1]	Max Energy [2] (MeV/n)	LET in Si at Max Energy [6] (MeV/(mg/cm ²))	Peak LET in Si (MeV/(mg/cm ²))	Range in Si (mm)	Max Flux [3] (ions/spill)
H ¹	2500	0.00171	0.51	5470	2.2x10 ¹¹
He ³	1500	0.006679	1.5	2220	0.3 x 10 ¹⁰
He ⁴	1500	0.006919	1.5	2960	0.3 x 10 ¹⁰
Li ⁷	1500	0.01557	2.3	2274	4x10 ⁹
C ¹²	1500	0.06227	5.2	972	1.2x10 ¹⁰
O ¹⁶	1500	0.1107	7.3	729	0.4x10 ¹⁰
Ne ²⁰	1500	0.173	9	583	1.2x10 ¹⁰
Si ²⁸	1500	0.339	14	417	0.3x10 ¹⁰
CI ³⁵	1500	0.4999	17.4	353	0.2x10 ¹⁰
Ar ⁴⁰	1500	0.5605	18.7	360	0.02x10 ¹⁰
Ti ⁴⁸	1500	0.8372	24.2	289	0.08x10 ¹⁰
Fe ⁵⁶	1470	1.171	29.3	235	0.2x10 ¹⁰
Kr ⁸⁴	721	2.54	41	70.5	2.0x10 ⁷
Zr ⁹¹	300	4.58	48.5	15.6	1 x 10 ⁶
Nb ⁹³	300	4.8	47.4	15.4	1 x 10 ⁶
Xe ¹³²	589	6.1	69.2	36.6	5.0x10 ⁷
Ta ¹⁸¹	475	11.7	87.5	21.1	5.0x10 ⁷
Au ¹⁹⁷	400	15.0	94.2	14.9	1.0x10 ⁸
Sequential Field	Various	Various	Various	Various	Various
Solar Particle Event	Various	Various	Various	Various	Various
GCR Simulation	Various	Various	Various	Various	Various

12

Time structure

- Spills and microstructure
- 300 ms every 2.8 6.6 s

https://www.bnl.gov/nsrl/userguide/time-structure-in-beam.php

14

Beam size and monitoring

- Large field size
 - / Typically 20 x 20 cm²
 - / Up to 60 x 60 cm²
- Uniformity typically ± 3 %
- Monitoring
 - / Digital beam imager
 - / Large ion chamber for high flux
 - / Plastic scintillators for low flux

TRIUMF

Located in Vancouver, Canada Protons (PIF) Neutrons (NIF)

Proton Irradiation Facility, PIF

BL1B protons

Standard Test 350 or 480 MeV (480 MeV preferred) Energies Some other energies with a degrader

Extracted Intensity 0.1 to 3 nA

Flux Standard location: 10⁵ to 4x10⁷ (protons/cm²/s) (10² possible) Upstream location: 7x10⁸ max

Spot Size Standard location: 3x3 cm to 7.5x7.5 cm Upstream location: 1 to 2 cm diameter

Spot Homogeneity Standard location: +/- 5% Upstream location: +/- 10%

> Standard location: 10 to 20 mGy/s Dose Rate (1 to 2 rads/s) Upstream location: up to 500 mGy/s (50 rads/s)

Beam Counting and Monitoring System

Device-Positioning Remote-controlled X-Y platform with Remote-controlled X-Y platform with System laser alignment

Access Conditions 20 m cable length to Control Area

https://www.triumf.ca/pif-beam-specifications

BL2C protons

63 or 105 MeV Other energies available with a degrader or by changing the cyclotron extraction energy

0.1 to 7 nA

Standard location: 10⁵ to 1x10⁸ (10² possible) Upstream location: 2x10⁹ max Standard location: 1x1 cm to 5x5 cm or 7.5 cm diameter Upstream location: 0.5 to 2 cm diameter

Standard location: +/- 5% Upstream location: +/- 10%

Standard location: 50 to 100 mGy/s (5 to 10 rads/s) Upstream location: up to 1000 mGy/s (100 rads/s)

Ion Chamber, Scintillator, or Faraday Cup

laser alignment

20 m cable length to Control Area

A 480 MeV proton has 58 cm range in Si (SRIM2013)

Neutron Irradiation Facility, NIF

- Spallation neutrons
- TNF
 - / TRIUMF Neutron Facility
 - / Target down BL1A
- BL1B and BL2C
 - / Targets in PIF

NEUTRON IRRADIATION FACILITY

NIF, TNF area

https://www.triumf.ca/ne utron-irradiation-facility

NIF, TNF area

- High flux but limited space
 - Fixed beamspot size, 5 cm x 15 cm (vertical x horizontal)
 - / Narrow access channel, 15 cm in beam direction x 27 cm perpendicular to beam
 - / Typical flux of >10 MeV neutrons: ~3x10⁶ n/cm²/s

NIF, BL1B area

- Large area for setting up and testing equipment in PIF
- Ability to change beam size and flux
 - / Flux of >10 MeV neutrons: 10^3 to 10^5 n/cm²/s
 - / Circular beamspot, 5 to 75 cm diameter
- Collimated protons available at the same location (PIF) to confirm errors from a specific sensitive chip.
- Variety of stands and support tables with vertical positioning capability.

https://www.triumf.ca/nifbeam-specifications

NIF Beam data

Systems can be irradiated

	TNF neutrons	BL1B neutrons	BL2C neutrons
Energy	Thermal to 400 MeV	1/E spectrum to 480 MeV	1/E spectrum to 120 MeV
Flux (neutrons/cm²/s)	2x10 ⁶ to 3x10 ⁶ above 10 MeV. 5x10⁵ thermal energies	10³ to 5x10⁵ above 10 MeV	10³ to 5x10⁴ above 10 MeV
Spot Size	5x12 cm	5 to 75 cm diameter	30 to 150 cm diamete
Spot Homogeneity	r +/- 10%	+/- 10%	+/- 10%
Beam Counting and Monitoring System	BF ₃ Counter and Activation Foils	BF ₃ Counter and Activation Foils	BF ₃ Counter and Activation Foils
Device-Positioning System	Movable Trolley with positive stop	Remote-controlled X-Y platform with laser alignment	Remote-controlled X-Y platform with laser alignment
Access Conditions	6 m cable length to Control Area	20 m cable length to Control Area	20 m cable length to Control Area

High energy accelerators in Europe: GANIL, GSI and KVI

European high-energy heavy-ion beams GANIL – Caen, France GSI – Darmstadt, Germany KVI – Groningen, Netherlands

GANIL

- Small beam that can be swept over a region
 / Can cover 4x50 cm²
- Energies up to 60 MeV/u for ⁸⁶Kr
 - / 1223 µm range in Si
- Might not be able to cover whole system
- Not able to penetrate packaged components
- One ion per campaign

GSI SIS18 beam

- Energies up to 2 GeV/u
 / From p to U
 - / Lower for heavier elements
- Beam size 1 cm diameter
 / Beam sweeping 20x20 cm²
- Not commonly used for electronics testing
- One ion per campaign

System possible to irradiate. High beam penetration.

https://www.gsi.de/en/researchaccelerators/accelerator_facility.htm

KVI

- Energies up to 90 MeV/u
 / He, C, O, Ne
- Up to 30 MeV/u
 - / O, Ne, Ar, Kr, Xe
- Beam size 3x3 cm²
- cm range in Si for 90 MeV/u, and mm range for 30 MeV/u

Small part of system possible to irradiate. Some beam penetration.

AGOR cyclotron <u>https://www.rug.nl/kvi-</u> <u>cart/research/facilities/agor/agorfirm/</u>

European high-energy proton irradiation facilities

KVI continuation PIF at PSI – Villigen, Switzerland

Proton beams

- PIF and KVI provide high energies
- UCL and RADEF have only lower energies available

	PIF	KVI	UCL	RADEF
Energy (MeV)	6 – 230	10 - 184	10 - 62	0.4 - 55
Beam size (cm diameter)	9	12	8	10
Max. range in Si (mm, SRIM2013)	176	120	18	14
Flux (p/cm ² /s)	$< 2x10^{9}$	< 10 ⁹	$< 5 \times 10^{8}$	$< 3x10^{8}$

Proton system level testing information: S. M. Guertin, Board Level Proton Testing Book of Knowledge for NASA Electronic Parts and Packaging Program

Summary

- Facilities where irradiation of whole 3D structures is possible are scarce
- Testing systems at other facilities would require some imagination, but is possible
- Testing with many particle types possible
 - / Neutrons provide high penetration
 - / NSRL heavy ion testing facility for 3D systems

Thank you for your attention!

- **Daniel Söderström**
 - daniel.p.soderstrom@jyu.fi

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721624.

Bonus and old slides

NIF vs Chiplr

	TNF neutrons	BL1B neutrons	BL2C neutrons	Chiplr
Energy	Thermal to 400 MeV	1/E spectrum to 480 MeV	1/E spectrum to 120 MeV	(1/E) spectrum to 800 MeV
Flux (neutrons/cm²/s)	2x10 ⁶ to 3x10 ⁶ above 10 MeV 5x10 ⁵ thermal energies	10³ to 5x10⁵ above 10 MeV	10³ to 5x10⁴ above 10 MeV	10 ⁷ above 10 MeV
Spot Size	5x12 cm	4 to 60 cm diameter	30 to 150 cm diameter	Up to 70x70 mm ² (Planned up to 1 m ² for future)
Spot Homogeneity	+/- 10%	+/- 10%	+/- 10%	
Beam Counting and Monitoring System	BF ₃ Counter and Activation Foils	BF ₃ Counter and Activation Foils	BF ₃ Counter and Activation Foils	
Device- Positioning System	Movable Trolley with positive stop	Remote-controlled X-Y platform with laser alignment	Remote-controlled X-Y platform with laser alignment	
Access Conditions	6 m cable length to Control Area	20 m cable length to Control Area	20 m cable length to Control Area	

Electronic systems testing example

- A. de Bibikoff et al. RADECS 2019
- Irradiation of one PCB with components on both sides
- Considerations for SEL in system

/ IR camera to detect SEL

• Considerations for LET span of ion through the system

Electronic systems testing example

- A. de Bibikoff et al.
- Irradiation of one PCB with components on both sides
- Considerations for SEL in system IR camera
- Considerations for LET span of ion through the system

A. de Bibikoff, Method for Systemlevel testing of COTS electronic board under High Energy Heavy Ions, RADECS 2019

CERN facilities

CHARM already discussed IRRAD – high-energy protons Gamma ray facilities Sometimes very high-energy ions

CHARM and IRRAD

- 24 GeV protons from PS in spills
- Sometimes 5-6 GeV/n ions
- Beam sizes
 - / CHARM about 10x10 cm²
 - / IRRAD up to about a cm diameter

LANSCE

Los Alamos Neutron Science Center Proton linac and neutron spallation targets Industrial research at the Weapons Neutron Research facility (WNR)

Neutrons at LANSCE

- Electronic systems and ICs testing at the Irradiation of Chips and Electronic (ICE) Houses (ICE-I and ICE-II)
- 800 MeV protons on a tungsten spallation target
- Atmospheric neutron spectrum up to about 600 MeV
 - / At ICE-II, se image
 - / At ICE-I, lower energies

Los Alamos High-Energy Neutron Testing Handbook, Steve Wender, LANL

Figure 1 Neutron Spectrum for the ICE-II flight path (30R) at LANSCE/WNR

Radiobiology

- Facility used mainly for radiobiology, e.g. how astronauts are affected by space radiation
- Different irradiation routines
 - / E.g. GCR simulation

https://www.bnl.gov/nsrl/userguide/GCRSim.php

Proton Irradiation Facility, PIF

BL1B protons

Standard Test 350 or 480 MeV (480 MeV preferred) Energies Some other energies with a degrader

Extracted Intensity 0.1 to 3 nA

Flux Standard location: 10⁵ to 4x10⁷ (protons/cm²/s) (10² possible) Upstream location: 7x10⁸ max

Spot Size Standard location: 3x3 cm to 7.5x7.5 cm Upstream location: 1 to 2 cm diameter

Spot Homogeneity Standard location: +/- 5% Upstream location: +/- 10%

Standard location: 10 to 20 mGy/s Dose Rate (1 to 2 rads/s) Upstream location: up to 500 mGy/s (50 rads/s)

Beam Counting and Monitoring System

Device-Positioning Remote-controlled X-Y platform with Remote-controlled X-Y platform with System laser alignment

Access Conditions 20 m cable length to Control Area

https://www.triumf.ca/pif-beam-specifications

BL2C protons

63 or 105 MeV Other energies available with a degrader or by changing the cyclotron extraction energy

0.1 to 7 nA

Standard location: 10⁵ to 1x10⁸ (10² possible) Upstream location: 2x10⁹ max Standard location: 1x1 cm to 5x5 cm or 7.5 cm diameter Upstream location: 0.5 to 2 cm diameter

Standard location: +/- 5% Upstream location: +/- 10%

Standard location: 50 to 100 mGy/s (5 to 10 rads/s) Upstream location: up to 1000 mGy/s (100 rads/s)

Ion Chamber, Scintillator, or Faraday Cup

laser alignment

20 m cable length to Control Area

A 480 MeV proton has 58 cm range in Si (SRIM2013)

https://www.triumf.ca/proton-irradiation-facility

NIF, BL1B area

 Irradiation in the PIF area

