ESR 13 FPGA modules for avionic and new space applications

RADSAGA System Level Test Review– November 12

Israel Lopes

Supervisor: Vincent Pouget Co-supervisor: Ketil Røed

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie-Sklodowska-Curie grant agreement number 721624.

Outline

- Context
- State-of-the-art
- Methodology
- Case study
- Radiation experiments
- Results and Discussion
- Conclusion

Context

- Digital system under study:
 - Commercial Industrial Digital System-on-Modules (SoMs)
 - Including state-of-the-art System-on-Chips (SoCs)
 - Application: Control loop
- COTS components
- Space and atmospheric environments
- Cost-effective qualification approach
- Small-sats and non critical missions
- Short and long duration missions

Partners

- RADSAGA network
- University of Montpellier
 - Institute of Electronic and Systems (IES)
- · Facilities
 - ISIS ChipIR atmospheric neutron facility
 - KVI-CART high-energy proton facility

The ChipIr team Dr Chris Frost and Dr Carlo Cazzaniga

Used for hardened and COTS components Components selection Benchmark application used

Conventional Radiation Qualification Methodology

- System-level reliability is estimated with significant margins
- Sensitive components can be replaced or protected by systemlevel solutions
- Particle beams: Low and High energy protons and heavy-ions, and high energy neutrons
- Gamma ray source: 60Co

Component Level approach

Bottom-up approach

•

•

•

- Reference standards:
 - TID: ESCC 22900, MIL-STD 883 Method 1019, MIL-STD 750 Method 1019
 - SEE: ESCC 25100, MIL-STD 750 Method 1017, JEDEC 89A

[[]AIRBUS, RADECS 2017- Short course]

State-of-the-art

State-of-the-art

Emerging Radiation Qualification Methodology

System Level approach

- Top-down approach [3]
- Best-suited for COTS systems [1][2][3]
- Mostly used for non-critical missions [3] or small[4] and cube sats[5]
- "Test as you fly" [1]
- Direct system-level reliability estimation
- · High penetration beam with large spot size required
 - 200MeV proton test commonly used [1]
 - Atmospheric neutrons (< 800MeV)
 - CHARM AND NSRL alternatives
- Low fluences
 - Screen most sensitive components
- · Higher fluences [2]
 - Better coverage of fault modes
- No test standard available

[Rousselet, RADECS, 2016]

[1] Guertin, Board level proton test book, 2017

- [2] Ladbury, NSREC 2017 Shortcourse
- [3] Uznanski, RADECS 2017 Shortcourse
- [4] Julien, AeroConf, 2017
- [5] Secondo, TNS, 2018

Component vs System level approach

	Component	System
Cost	8	\mathbf{c}
Reusability	<u>•</u>	()
Component observability	\bigcirc	8
System observability	8	<u>.</u>
Evaluation of complex Components		\mathbf{c}

- Component observability enables data reuse
- System-level observability enables more direct system failure analysis
- Component data usually not reusable for complex components (SoC, FPGA etc)

Methodology

Bridging methodology development

RADSAGA

Case studies

System-on-modules

Zynq7000 System-on Module

Zynq Ultrascale+ System-on Module

Case study

Application: Control loop

- Representative application of a space or avionic embedded digital system
- Data processing loop
 - AES decryption
 - FIR filtering
 - PID controlling
 - PWM actuation
- Resources under test:
 - DDR, QSPI FLASH, OCM, APU and PL (FPGA)
- Self-test controller
 implemented with RPU

Software/Firmware instrumentation

- **Instrumentation =** adding IP or code elements to the application to improve system's observability and failure diagnosis
- Different levels of instrumentation are implemented and can be activated dynamically during the campaign:
 - Instrumentation level 0 (IL0) Application control
 - Counter-based watchdogs
 - Status checking: FLASH, PL FIFO
 - Application output checksum
 - Instrumentation level 1 (IL1) mostly external resources checking
 - FLASH and DDR ECC checking
 - Intermediate applications checksums
 - Instrumentation level 2 (IL2) Internal resources checking
 - BRAM and OCM ECC checking
 - SoC registers checking

RADSAGA System Level Test Review – November 2019

Radiation experiments Component/System neutron experiment

- Facility: ChipIR atmospheric-like neutrons (<800MeV)
- Systems under test:
 - Run 0: ZYNQ7000 SoM + benchmarks (DDR3, QSPI)
 - Run 1: ZU+ SoM + benchmarks (DDR4, QSPI, OCM)
 - Run 2: ZU+ SoM + application (IL1)
- Fresh and temperature-stressed components tested
- Runs 0 & 1:
 - No error in QSPI FLASH, no error observed in ZU+ OCM
 - DDR3 and DDR4 SEUs, MCUs, and probably SEFIs
- Run 2:
 - IL1-related errors observed
 - Soft and Hard SEFIs observed (low statistics)
- Simple test-bench with only software instrumentation
 - Provides first set of useful results at system and component level

Results summary

RADSAGA System Level Test Review – November 2019 12

Radiation experiments Component/System proton experiment

(cm2)

Cross-section

- Facility: KVI-CART, protons at 184MeV
- Systems under test: •
 - Run 0: ZYNQ7000 SoM + benchmarks (DDR3, OCM)
 - Run 1: ZYNQ7000 SoM + application (IL0-2) ٠
 - Two boards in parallel: 1 with full SoM exposed, 1 with DDR out of the beam
- Run0 (low fluence ~1E8, facility issue) :
 - No OCM and DDR errors •
- Run 1(low fluence ~1E8-9, facility issue) :
 - Influence of DDR on application crashes could be extracted
 - Different types of errors could be observed using IL0 and IL1

RADSAGA System Level Test Review – November 2019 13

Component/System experiments

ChipIR experiment

Results and Discussion

Results summary

- System-level testing of 2 commercial digital SoMs
 - Pros
 - Direct obtention of a system's fault signatures catalogue (with their relative rates)
 - Good observability of soft failures in digital parts could be achieved using software instrumentation
 - Instrumentation requires source code access
 - Many different kind of events with low statistics
 - Besides the final SW application, benchmarks can help in improving the test coverage
 - Excluding a component from the beam (or masking it) can help in isolating a sensitive component
 - Cons
 - Lack of observability of SEL and analog parts (power regulators)
 - Could probably be achieved by minor hardware modifications (full schematic required, test complexity ↑)
 - No destructive event observed during the campaigns

Results and Discussion

First set of guidelines and recommendations for system-level testing of a digital System-on-Module

- Increasing the observability is a key
 - Gives more value to the collected data
 - · Facilitates the implementation of fault-tolerance solutions at system-level
 - Solution: implementation of flexible Software/Firmware instrumentation
 - Can be automated at compiler level
 - Could include benchmarks as parasitic workload
 - · Optimal use of embedded resources required to limit the overhead
- · Fault injection techniques can be used
 - Laser testing, SW or HW-based techniques
 - Before testing: to tailor the instrumentation design
 - After testing: for root cause analysis of critical events
- Make a good use of the beam geometry or component masking possibilities

Conclusions and future prospective

- Bridging methodology from component to system-level
 - Finding an intermediate path to make an optimal use of both levels, and to facilitate the transition to systemlevel testing
 - Opening the use of state-of-the-art technologies and devices
 - Reducing margins
 - Reducing costs
- First sets of experimental results and guidelines
- Future works
 - New proton campaign (KVI-CART) in <2 weeks for testing the ZU+ SoM
 - X-ray TID campaigns in progress (IES)
 - Laser tests of ZU+ SoM (IES)
 - Still being considered for early 2020:
 - feasibility of an heavy-ion campaign (RADEF)
 - ageing campaign (IES)

Conclusions and future prospective

- Applicability to a future qualification methodology
 - The proposed methodology relies on well-established practices:
 - Testing with ~200MeV proton or atmospheric-like neutron spectrum
 - "Test as you fly" (i.e. using the final SW application)
 - An originality of our approach:
 - Different levels of software instrumentation to improve system's observability (first results to be published)
 - The approach needs to be generalized and tested on other architectures
 - Could be standardized through the development of a standard library compatible with various architectures
 - The question of optimal use of system-level test data to estimate system failure rates still requires new modular SW tools for rate prediction (for instance: starting from the basis of SEAM [1] capabilities)

[1] https://modelbasedassurance.org/