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• Digital system under study: 

• Commercial Industrial Digital System-on-Modules (SoMs)

• Including state-of-the-art System-on-Chips (SoCs)

• Application: Control loop

• COTS components

• Space and atmospheric environments

• Cost-effective qualification approach

• Small-sats and non critical missions

• Short and long duration missions

Context
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• RADSAGA network

• University of Montpellier

• Institute of Electronic and Systems (IES)

• Facilities

• ISIS ChipIR atmospheric neutron facility

• KVI-CART high-energy proton facility

Partners
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Component Level approach

• Bottom-up approach

• Used for hardened and COTS components

• Benchmark application used

• System-level reliability is estimated with significant margins

• Sensitive components can be replaced or protected by system-

level solutions

• Particle beams: Low and High energy protons and heavy-ions, 

and high energy neutrons

• Gamma ray source: 60Co

• Reference standards:

• TID: ESCC 22900, MIL-STD 883 Method 1019, MIL-STD 750 Method 1019

• SEE: ESCC 25100, MIL-STD 750 Method 1017, JEDEC 89A

Conventional Radiation Qualification Methodology
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[AIRBUS, RADECS 2017- Short course]
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System Level approach

• Top-down approach [3]

• Best-suited for COTS systems [1][2][3]

• Mostly used for non-critical missions [3] or small[4] and cube sats[5]

• “Test as you fly” [1]

• Direct system-level reliability estimation

• High penetration beam with large spot size required

• 200MeV proton test commonly used [1]

• Atmospheric neutrons (< 800MeV)

• CHARM AND NSRL alternatives

• Low fluences

• Screen most sensitive components

• Higher fluences [2] 

• Better coverage of fault modes

• No test standard available

Emerging Radiation Qualification Methodology
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State-of-the-art

[2] Ladbury, NSREC 2017 Shortcourse

[3] Uznanski, RADECS 2017 Shortcourse

[4] Julien, AeroConf, 2017

[1] Guertin, Board level proton test book, 2017

[5] Secondo, TNS, 2018
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[Rousselet, RADECS, 2016]



• Component observability enables data reuse

• System-level observability enables more direct 

system failure analysis

• Component data usually not reusable for 

complex components (SoC, FPGA etc)

• A combination of both methodologies is 

required

Component vs System level approach
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Component System

Cost

Reusability

Component observability

System observability

Evaluation of complex

Components

System level radiation

information

Component level radiation 

information
Bridge methodology



8

System analysis

System to 

component data 

correlation

Testing different applications

(Aviation, ground…)

Testing different technologies

(Planar, FinFET…)

Testing for different mission profiles

(proton, neutron…)

Component level reliability data

System-level reliability prediction

Final application

System instrumentation

System 

level data

Component 

level data

Test plan elaboration

Component level test

Critical 

components

Mission profileSystem design

Components 

usageBridging 

methodology

Validation steps

Benchmark applications

?

Bridging methodology development
Methodology

Data available

System level test



System-on-modules
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Application: Control loop
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Case study 
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• Instrumentation = adding IP or code elements to the application to improve system’s 
observability and failure diagnosis

• Different levels of instrumentation are implemented and can be activated dynamically 
during the campaign:

• Instrumentation level 0 (IL0) – Application control
• Counter-based watchdogs

• Status checking: FLASH, PL FIFO 

• Application output checksum 

• Instrumentation level 1 (IL1) – mostly external resources checking
• FLASH and DDR ECC checking

• Intermediate applications checksums

• Instrumentation level 2 (IL2) – Internal resources checking 
• BRAM and OCM ECC checking

• SoC registers checking

Software/Firmware instrumentation

RADSAGA System Level Test Review –

November 2019
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Component/System neutron experiment
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Radiation experiments

• Facility: ChipIR atmospheric-like neutrons (<800MeV)

• Systems under test:

• Run 0: ZYNQ7000 SoM + benchmarks (DDR3, QSPI)

• Run 1: ZU+ SoM + benchmarks (DDR4, QSPI, OCM)

• Run 2: ZU+ SoM + application (IL1)

• Fresh and temperature-stressed components tested

• Runs 0 & 1:

• No error in QSPI FLASH, no error observed in ZU+ OCM 

• DDR3 and DDR4 SEUs, MCUs, and probably SEFIs

• Run 2:

• IL1-related errors observed

• Soft and Hard SEFIs observed (low statistics)

• Simple test-bench with only software instrumentation

• Provides first set of useful results at system and component level
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Component/System proton experiment
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Radiation experiments

• Facility: KVI-CART, protons at 184MeV

• Systems under test:

• Run 0: ZYNQ7000 SoM + benchmarks (DDR3, OCM)

• Run 1: ZYNQ7000 SoM + application (IL0-2)

• Two boards in parallel: 1 with full SoM exposed, 1 with 

DDR out of the beam

• Run0 (low fluence ~1E8, facility issue) :

• No OCM and DDR errors

• Run 1(low fluence ~1E8-9, facility issue) :

• Influence of DDR on application crashes could be 

extracted

• Different types of errors could be observed using IL0 

and IL1
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ChipIR experiment KVI-CART experiment

Component/System experiments
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• System-level testing of 2 commercial digital SoMs

• Pros

• Direct obtention of a system’s fault signatures catalogue (with their relative rates)

• Good observability of soft failures in digital parts could be achieved using software instrumentation

• Instrumentation requires source code access

• Many different kind of events with low statistics 

• Besides the final SW application, benchmarks can help in improving the test coverage

• Excluding a component from the beam (or masking it) can help in isolating a sensitive component

• Cons

• Lack of observability of SEL and analog parts (power regulators)

• Could probably be achieved by minor hardware modifications (full schematic required, test 

complexity )

• No destructive event observed during the campaigns

Results summary
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Results and Discussion



First set of guidelines and recommendations
for system-level testing of a digital System-on-Module
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Results and Discussion

• Increasing the observability is a key
• Gives more value to the collected data 

• Facilitates the implementation of fault-tolerance solutions at system-level

• Solution: implementation of flexible Software/Firmware instrumentation
• Can be automated at compiler level

• Could include benchmarks as parasitic workload

• Optimal use of embedded resources required to limit the overhead

• Fault injection techniques can be used
• Laser testing, SW or HW-based techniques

• Before testing: to tailor the instrumentation design

• After testing: for root cause analysis of critical events

• Make a good use of the beam geometry or component masking possibilities



Conclusions and future prospective
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• Bridging methodology from component to system-level 
• Finding an intermediate path to make an optimal use of both levels, and to facilitate the transition to system-

level testing

• Opening the use of state-of-the-art technologies and devices

• Reducing margins

• Reducing costs 

• First sets of experimental results and guidelines

• Future works

• New proton campaign (KVI-CART) in <2 weeks for testing the ZU+ SoM

• X-ray TID campaigns in progress (IES)

• Laser tests of ZU+ SoM (IES)

• Still being considered for early 2020: 

• feasibility of an heavy-ion campaign (RADEF)

• ageing campaign (IES)

Conclusions



Conclusions and future prospective
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• Applicability to a future qualification methodology

• The proposed methodology relies on well-established practices:

• Testing with ~200MeV proton or atmospheric-like neutron spectrum 

• “Test as you fly” (i.e. using the final SW application)

• An originality of our approach:

• Different levels of software instrumentation to improve system’s observability (first results to be 

published)

• The approach needs to be generalized and tested on other architectures

• Could be standardized through the development of a standard library compatible with various 

architectures 

• The question of optimal use of system-level test data to estimate system failure rates 

still requires new modular SW tools for rate prediction (for instance: starting from the 

basis of SEAM [1] capabilities)

Conclusions

[1] https://modelbasedassurance.org/


