ESR14 Software-Defined Radio for Space Applications

J. Budroweit¹, M. Jaksch¹, A. Koelpin², R. Garcia Alia³, A. Coronetti³ ¹DLR, 28359 Bremen, Germany ²B-TU, 28359 Bremen, Germany ³CERN, 1211 Geneva, Switzerland

> RADSAGA System Level Test Review November 12th, 2019

RADSAGA is a project funded by the European Union's Horizon 2020 research and innovation programme under the MSC agreement no. 721624.

CERN

What is an SDR?

- A SDR usually defines the signal processing in software, implemented on an DSP or FPGA
- RF Front-End mostly untouched and tailored to specific application requirements

ESR14: Software-Defined Radio for Space Applications

State of the art SDR systems for space applications

- SDRs are already established
- Commonly used for single applications / units
- Limited in operational frequency band

Two categories/approaches with a huge gap in between:

(1) High reliability:

- High mass and mechanical dimensions
- High costs
- Long lead-times
- High power consumption

(2) Low reliability:

- No radiation effect background
- Low frequency range (< S-Band)
- Non-conformances to mission ICD

Source: Frontier Radio platform by JHU/APL

A new approach using new technologies

- A SDR usually defines the signal processing in software, implemented on an DSP or FPGA
- RF Front-End mostly untouched and tailored to specific application requirements

Motivation

Generic Software-Defined Radio Platform

- Flexible radio platform for space applications
- Radio system that allows simple re-use and modification from mission to mission
- Small and integrated design with low power and mechanical properties suitable to operate on small satellites
- Low budget driven design with use high performance technologies (e.g. FPGAs/Processors)
- Radiation tolerant system design with "higher" claim on reliability aspects (e.g. for TM/TC operations)

Motivation

Novel Aspects

- Independencies from frequency band limitations for TM&TC (VHF, UHF,L S/C-Band...)
- Single radio platform for multiple applications (two/three/four in one)
- Reconfiguration and operation of multiple applications (e.g. TM&TC or/and ADS-B or/and AIS or/and Spectral Monitoring)
- Better utilization of given resources (power, weight, ...)
- Strong focus on radiation tolerances on system level (no destructive events and low soft-failure rates)
- Primary (but not limited) target for earth observation and radio frequency applications in Low Earth Orbit (LEO) missions with
 < 2 years of operation

Test Requirements:

- TID tolerance > 100 Gy(Si)
- No destructive SEEs
- Moderate SEFI rates

Challenges

- Making modern sate-of-the-art technologies available for space, in a sufficient way, is the biggest challenge due to:
 - Unknown reliability characteristics for space
 - Harsh environment in space
 - Thermal stress
 - Vacuum condition
 - Radiation (TID, SEE)
 - Microgravity
 - Atomic oxygen
- Trade-off between cost, efficiency and reliability -> Fault-Tolerant Design!

Fault-Tolerant design approach - Hardware design with cost-efficient effort

- 1. Reliability prediction analysis
- 2. Analysis of radiation data bases and test data on COTS components with suitable candidates for the SDR system design
- 3. Selection of well-known devices with certain product traceability
- 4. Radiation testing of selected "unknown" devices (e.g. AD9361)
- 5. RadHard or Rad-Tolerant alternatives
- 6. System-level mitigation on expected effects:
 - Redundancies, voting
 - Latchup-protection
 - OVP (SET)
 - Configuration scrubbing
 - EDAC mechanisms
 - Usage of watchdogs
 - Safe system-reset (e.g., prevent eFuse setting corruption)
- 7. Testing on system-level to verify the hardening strategies (e.g., radiation)

Topical SDR electronics of the test

SDR core electronics

- RFIC (AD9361)
- Zynq-7000 (ZC7020)
- 2x512 GB DDR3 SDRAM (Micron)
- 1 GB NAND (Micron)
- RS422, LVDS driver (TI)
- Supervisory circuit

Risk mitigation due to RadHard alternatives (if required)

- Interfaces, power, clocking and supervising devices are replaceable with RadHard solutions
- Unavoidable COTS devices with certain screening level and radiation data are available

Link to existing and available test data for non-RadHard devices

Suitable facilities for system level testing (in EU)

- Other "unknown" components on the PCB?
- Failure Propagation?
- Global functionality?
- Validation of radiation effects mitigation?

- Deep penetration beams
- Global/Broad beam size
- Environment representativeness

System level testing: Failure detection and mitigation

• Two SUTs in a complex setup due to limited RF interfaces

On system-level

- Potential destructive events due to high current and voltage states
 - Sub-voltage latch-up detection and detection
 - Overvoltage detection and protection
- Single event failure interrupt
 - System-Watchdog executes reset if heart-beat disappears
 - Time-Out of command response (power-cycle)
 - Soft-Watchdog (on program/application level)

On component-level

- RF-Transceiver deep failure mitigation
- NAND Flash supervisory (Boot device)

ESR14: Software-Defined Radio for Space Applications

System level testing: facility

Test performed at PC0 in CHARM:

- $\sim 1.02 \times 10^7$ HEH/cm²/spill
- ~0.44 rad(Si)/spill
- > Fluence 2.170×10^{11} #/cm² and a TID of 9.25 krad(Si)

ERM

RADSAGA

System level testing: results

- System(s) run with multiple tasks on request
 - HK-Data, RF-Data aq., Spectrogram, ...
- No degradation of voltage and current due to TID
- No SELs or destructive failures
- Ability to perform self-recovery

Туре	#Event	#Spills	HEHeq Fluence [/cm²]	Cross-Section [device/cm²]
Reboot	5320	21236	2.170 × 10 ¹¹	2.451 × 10 ^{−8}
Power-cycle	75	21236	2.170×10^{11}	3.456 × 10 ⁻¹⁰

- 100% recovery from failure to valid system operation
- No interrupted boot-processes observed (process takes ~15sec)
- 95% of all failures were system crashes (Zynq+DDR3)
- No invalid data on boot devices (NAND Flash)
- Data fly-by storage on SD-Card critical (SD-Card broken)
 - SUT#2 (partially) not able to response on requested tasks

System level testing: link to component-level testing

- RF Transceiver has been irradiated to Proton (max. 190MeV)
 - Low SEU rate in configuration registers
 - Very low SEFI rate
 - No SEFI seen in CHARM, only minor SEUs
- Zynq+DDR3 has been irradiated by proton (max. 190MeV)
 - Same configuration and software were used as in CHARM (only exception: SD-Card was not used for intermediate data storage)
 - No RF-board in use (no RF data captured)
 - Fluence: $5.0 \times 10^8 \, \text{#/cm}^2$
 - Comparable saturation of cross-section
 - $\sim 2.6 \times 10^{-8} \text{ cm}^2/\text{device}$ (proton)
 - 2.451 × 10⁻⁸ cm²/device (CHARM)

Qualification/Test methodologies (summary)

Applicable to (non-HighRel) space missions:

- Validation of destructive SEEs (e.g., through heavy ion) on component-level
 - Critical components that are not available in RadHard (e.g., Zynq or AD9361)
 - No test data are available and are not outdated
- Soft error testing of multiple components (groups) well covered through system-level testing
 - Too many tests to be done on sub-components
 - Failure propagation and interaction not covered on component-level testing
- Results for mix-field radiation testing are comparable to proton-only results in terms of cross-section saturation.

