A. Coronetti¹, F. Manni², J. Mekki², D. Dangla², C. Virmontois², N. Kerboub¹, R. Garcia Alia¹ ¹CERN, 1211 Geneva, Switzerland ²CNES, 31400 Toulouse Cedex, France

> RADSAGA System Level Test Review November 13th, 2019

RADSAGA is a project funded by the European Union's Horizon 2020 research and innovation programme under the MSC agreement no. 721624.

Context

- Eyesat student nanosatellite
 - Scientific mission (study zodiacal light of Milky Way)
- All components are COTS
- High risk acceptance space mission
 - LEO (low fluxes, mainly trapped protons)
 - Short lifetime (1.5 year)
- Cost-effective qualification approach?

Requirements:

- TID tolerance > 100 Gy(Si)
- Hard SEE rate on OBC and Camera > 1 per 6 months

Overview

- RADSAGA partners
- CERN-CNES Collaboration agreement
- CNES development of the On-Board Computer
- 3DPlus-CNES joint development of the Camera
- CERN-CNES cooperation for the test bench development
- Application areas:
 - Low cost space missions
 - COTS-based systems

Topical elements of the test

OBC

- PCB available commercially from Steel Electronics
- More than 50 COTS components
- Main component is a SoC (highly integrated system with multiple functionalities)
- Traceability only for SoC
- Hypervisor running on the OBC

Camera

- Commercial product available from 3DPlus
- Space qualified
- 3D layout, stacked PCBs
- All internal components are COTS
- Black box for the test at CHARM

Link to Existing Standards

Zynq7000 SoC

 Dose level device is not functional anymore

CMOS Camera

- Functional at 500 Gy(Si)
- Dark current measurements

- Other components on the PCB?
- Soft SEEs from the Zynq?
- Global functionality?
- HW/SW integration of OBC and payload?

Suitable facilities

- Other components on the PCB?
- **Soft SEEs** from the Zynq?
- Global functionality?
- HW/SW integration of OBC and payload?

- Wide beam field size

Deep penetrating beam

Allow testing of both OBC and payload

No heavy ions, only hadrons

- Environment representativeness
 - High energy hadron spectra similar to LEO proton spectra

Suitable facilities in Europe:

CHARM

٠

- ChipIR
- KVI-CART, PSI

Component level standards shortcomings

- Limitations in SEE standards for complex ICs/boards
 - SEL
 - Feasible if delidding is possible
 - SEU
 - Shall you test individually any subparts of a SoC/FPGA?
 - JEDEC standard and NASA guideline point out which elements shall be tested, however
 - Real applications make simultaneous use of a set of resources
 - Cross section varies with embedded software and firmware
 - Not easy to define all failure modes before a test
 - Common mode failures can be missed

Example:

- During the CHARM test large bunches of errors appeared simultaneously on different elements
 - Not SEU on the sub-components themselves
 - Errors due to a fault of the common GPIO port defined in the digital design
 - 40% of logged errors on the ECC protected BRAM, 12% of total OBC SEFI

Component level standards shortcomings

- How to deal with 3D Layout devices?
 - In general, no corresponding 2D board is available
 - Traceability of internal components?
 - How to interpret and use information provided by the manufacturer?
 - The Camera datasheet reports that the device is SEL-free up to 60 MeV.cm²/mg
 - During system level test at CHARM Camera configuration resets were observed
 - Heavy ion test demonstrated SEL sensitivity down to 11 MeV.cm²/mg
 - Camera is equipped by the manufacturer with anti-latchup system
 - No HW damage
 - But no mitigation at SW level in the OBC
 - To acknowledge SEL happened
 - To react and increase payload availability

System level testing: What to look for

- Potential destructive events at board level (SEL)
 - Detectable and with protection function
 - No SEL observed
- TID performance degradation
 - Telemetry of the Zynq (not affected during the test)
 - Unmonitored for other elements
- SEFI on OBC and rate prediction for mission
 - Cause of error identifiable by logging of the hypervisor
 - Processor crash vs. FPGA fault
 - Different self-recovery techniques tested
 - Power cycling
 - SW reset on the FPGA
 - SW reset on the partition

System level testing: What to look for

- System run with all mitigations used for the final application
 - Ability to perform self-recovery
 - Satisfactory
 - Full functionality recovered in less than 10 seconds
 - Rate for orbit (once every 2.5 years) is compatible with the mission
 - Rare deadlocks on SW reset (1 every 100 reboots)
 - Ability to recognize permanent data corruption
 - Not very satisfactory
 - All corrupted sequences ended in reboots
 - But mean time to reboot was 60 minutes in a strong flux environment
 - Data may remain corrupted longer in milder flux environment (e.g. 150 minutes to reboot in G0)
- Data logging with raw data

System level testing: What to look for

- Coupling of sophisticated devices
 - Use of flight software on the OBC to run the Camera
 - OBC controlling the Camera with the flight software embedded
 - Communication protocol run through spacewire
 - SEL of the camera are mitigated at HW level by internal anti-latchup (no damage on camera)
 - But they were not mitigated at SW level in the OBC
 - 44% unavailability of the camera during the test
 - OBC disrupting Camera operations
 - Picture data corruption
 - Data stored in Camera and OBC memories

Chosen facility possibilities and inconveniences

Tests performed in GO and R5:

- G0 has milder flux, but more thermal neutrons (not a thing in space)
- R5 has environment representativeness and about x15 higher flux
 - 1.5 · 10⁷ HEH/cm²/s (instantaneous)
 - $1.4 \cdot 10^6$ HEH/cm²/s (averaged)
- Observations:
 - OBC SEFI cross-section and common mode failure cross-section about **3 times higher in G0**
 - Thermal neutron dependence?
 - Same error signatures seen in the two positions
 - Independence from high energy (GeV)
 - More debugging information while in G0

Mitigations

- Camera reset once every 6 years
- Make camera resets transparent at system level
- Camera managed by the OBC
- The number of mitigations depends on the implemented acquisition loop
- Camera configuration added to the loop
- Additional watchdogging needed in the OBC

Effects not seen at component level

- Co-60 TID test of the Zynq pointed out failures between 240-480 Gy(Si)
- At CHARM Zynq received 260 Gy(Si), still operational
- However:
 - Stress + TID parametric degradation of I/O pin of the Zynq at 230 Gy(Si)
 - High frequency stressing not covered during component testing
 - Caused unnecessary reboots due to degradation of refresh signal to the watchdog
 - With external watchdog disabled, Zynq working correctly

RADSAGA

Qualification methodologies

Applicable to these kinds of space missions

Recall requirements:

- TID tolerance > 100 Gy(Si)
- Hard SEE rate on OBC and Camera > 1 per 6 months

- Pre-screen of destructive SEEs through heavy ion component level testing
 - Critical components for the system
 - Suitable for system level hardening
 - Suitable for system test-bench definition
- Soft error testing of complex ICs covered through system level testing
 - Too many tests to be done on sub-components
 - Use of flight SW, firmware, application
 - Concurrent management of all peripherals
- **TID** test can be integrated in the system level test

A. Coronetti¹, F. Manni², J. Mekki², D. Dangla², C. Virmontois², N. Kerboub¹, R. Garcia Alia¹ ¹CERN, 1211 Geneva, Switzerland ²CNES, 31400 Toulouse Cedex, France

> RADSAGA System Level Test Review November 13th, 2019

RADSAGA is a project funded by the European Union's Horizon 2020 research and innovation programme under the MSC agreement no. 721624.

When and how to use System Level testing for space

Based on space radiation environments and mission lifetime

	LEO equatorial	LEO polar	MEO, GEO, Interplanetary
>3 years	Moderate Dose, Attenuated GCR, Trapped Protons, Some Solar Proton dependence	High Dose, Higher GCR, High Energy Trapped Protons in SAA and Poles, Some Solar Proton dependence	High Dose, High GCR, High Solar Proton Variability
1-3 years	Manageable Dose, Attenuated GCR, Trapped Protons, Some Solar Proton dependence	Moderate Dose, Higher GCR, Trapped Protons, Some Solar Proton dependence	High Dose, High GCR, High Solar Proton Variability
<1 year	Manageable Dose, Attenuated GCR, Trapped Protons, Some Solar Proton dependence	Moderate Dose, Higher GCR, High Energy Trapped Protons, Some Solar Proton Dependence	Moderate Dose, High GCR, High Solar Proton Variability

Credit: M. Campola, 2019 RADECS short course

When and how to use System Level testing for space

Based on space radiation environments and mission lifetime

	LEO equatorial	LEO polar	MEO, GEO, Interplanetary
>3 years	Can replace TID of non-	Can replace TID of non-	Can complement
	critical components and	critical components and	component level TID and
	soft SEE testing of all	soft SEE testing of all	SEE testing of all
	components	components	components
1-3 years	Can replace TID and soft	Can replace TID of non-	Can complement
	SEE testing of all	critical components and	component level TID and
	components	soft SEE testing of all	SEE testing of all
		components	components
<1 year	Can replace TID and soft	Can replace TID and soft	Can replace TID and soft
	SEE testing of all	SEE testing of all	SEE testing of non-critical
	components	components	components

Destructive SEEs always tested at component level

