J-PARC neutrino beamline and neutrino detectors

2019-Nov.-18, CERN-KEK committee meeting K.Sakashita(KEK/J-PARC)

Long baseline neutrino oscillation experiment in Japan

J-PARC neutrino facility

- ~485kW stable operation
- 519kW (single shot) beam extraction to v beamline was successfully performed with no major issues

T2K and T2K-II

T2K indicates CP violation in neutrino oscillation with 3.16 x 10²¹ protons on target (POT) data (~2018)

Toward a discovery of CPV, we plan to accumulate more data up to 2x10²² POT by 2027 (T2K-II)

Toward >3 σ CPV sensitivity, we plan

★ Upgrade of beam power 0.5MW → 1.3MW

*** Upgrade of near neutrino detector to reduce systematic error**

***** Flux error reduction w/ hadron production measurements

CPV search with Hyper-K

· Discovery (5 σ) of CPV is highly expected!

- 260kt Water Cherenkov
- 186 kt fiducual : 8x Super-K
- high-QE PD w/ 40% (2x Super-K)

1.3 MW v-beamUpgraded ND/IWCD

Aim to start construction in 2020 and start operation in 2027

Expected number of ve appearance signation background

	Appearance signal	Wrong sign signal	Beam ν_{e} background	NC background	Total	T2K(now)
Neutrino mode	1600	20	260	130	2010 🚽	68
Antineutrino mode	1200	200	320	200	1920	19

Both beam power upgrade and reduction of syst. error are also crucial for Hyper-K

Cooperation between CERN and neutrino

experiments in Japan

6

- 90s-2002 K2K
 - > Neutrino beamline (horn etc)
 - \rightarrow HARP p(12.9 GeV/c) + AI $\rightarrow \pi^{\pm} K^{\pm}$ for K2K flux
- 2003-2009 T2K (CERN RE 13)
 - ➤ T2K-Europe: ~250 (~50%) of T2K signatories
 - France, Germany, Italy, Poland, Spain, Switzerland, UK
 - SC magnet for proton beam transport
 - > Neutrino beam line (horn, etc)
 - ► R&D for ND280 TPC
 - Beam tests of ND280 electromagnetic calorimeter
 - > Refurbishment and shipping, donation of UA1/NOMAD magnet
- 2006 future NA61
 - ➢ 2012-2017 T2K members of NA61 contributed to TPC, F-TOF, trigger
 - Future programme essential for T2K-II, HyperK
- Baby-MIND (CERN-NP05)
 - A part of T2K-Wagasci detector@ND280 and data taking started
- 2016-2021 T2K ND280 upgrade
 - CERN NP07
- 2018- CERN neutrino group joins to T2K
- Possible contribution to HyperK

CERN and T2K (Magnet)

CERN and T2K (TPC)

Event display@Baby-MIND

Beamline upgrade toward 1.3MW

- Increasing cooling capability for the heat generated by beam
- Accepting high repetition rate(~1Hz) beam
- Increasing capability of radio-active waste
- Realizing safe and stable operation Upgrade works in progress w/ international and domestic collaboration

Workshop for CERN/J-PARC-KEK collaboration on high intensity accelerator/beamline was held on 2019.Oct. @CERN

https://indico.cern.ch/event/847104/

Common technical challenges toward high intensity facility

New cooperation w/ CERN for these items to realize high beam power facilities is under discussion w/ relevant people

RaDIATE Collaboration <u>Activities</u>

- RaDIATE (Radiation Damage In Accelerator Target Environment) international collaboration is organizing high-intensity proton irradiation experiment at BNL-BLIP facility
 - Test specimens provided by participating accelerator labs.
 - Post-Irradiation Examination (PIE) being conducted at participating reactor/fusion energy research institutions with hot-cell facilities
- Collaboration is also conducting an in-beam thermal shock destructive inspection at CERN's HiRadMat facility
 - Including irradiated/damaged specimens at BLIP (BeGrid2)
 - Beam exposure completed in 2018, shipment / PIE in preparation

CERN-JPARC Cooperation: Amendment No.2

- Cooperation in the Development of Proton Accelerators, since 2009
- Expand the cooperation to the fields of high-intensity accelerator target facilities and relevant technologies

At J-PARC:

- Developments for novel target materials (Highly-ductile tungsten for SNS/muon target, SiC composite for muon/neutrino target ...)
- Upgrade of MR FX abort dump
- Experience on target facility operation

At CERN

- Various needs on TCD materials
- Thermal shock study at HiRadMat facility
- New target facility design (CENF/BDF)

In effect on 29 July 2019

Hadron production

- Thanks to NA61/SHINE experiment, T2K flux prediction with ~5% uncertainty was achieved with replica target data
- For T2K-II and HK, total flux uncertainty down to 3~4% is desired
- We proposed new measurements to achieve this goal → Addendum of NA61/SHINE was submitted to SPSC

Possibilities for (Very) Low Energy beams

at CERN North Area

N. Charitonidis (CERN, EN-EA)

CERN-SPSC-2018-008, SPSC-P-330-ADD-10 (2018)

EHN1 Extension - H2 VLE Bea

ND280 Upgrade

Replacing part of ND280 with new detectors in 2021 for better understanding of neutrino-nucleus interaction

CERN EP-NU has been member of project since Jan 2018 Approved as Neutrino Platform project NP07 in March 2019

(slides courtesy fo M.Yokoyama) ¹²

ND280 Upgrade (NP07)

CERN has been playing key roles in almost all aspects of the project

Test beams for prototypes of SuperFGD, TPC, TOF in summer 2018

ssembling room in EHN1

HA-TPC prototype test Development of gas system and resistive micromegas

Mockup "mini-basket" for **TOF** plane assembly and test **integration** of sub-detectors **Sup**

SuperFGD mechanics and calibration

Software and analysis development

Meetings ~3 times / year at CERN

White bel the notch

Beam Test at CERN for IWCD and Multi-PMT

Hyper-Kamiokande

Possible collaboration with CERN on HyperK Project

- Electronics and DAQ system
 - 1. Technical helps from experts in designing the front-end electronics modules, HV system and timing synchronization system. Same technologies are extensively used in the accelerator experiments.
 - Technical helps from experts in designing the special watertight pressure tolerant cables, connectors and enclosures.
 Especially, mechanical engineering supports are anticipated.
 - 3. Participation to the technical reviews of the electronics and DAQ system.

Summary

- T2K indicates CP violation in neutrino oscillation. We aim to discover the CP violation in T2K-II (Upgrade of J-PARC neutrino beamline and Near detector) and HK
- Essential cooperation between CERN and Japan on T2K beam and ND280 so far
- Many collaboration works with CERN are in progress and expected for T2K-II and HK

backup

HiRadMat Workshop July 2019 @ CERN

https://indico.cern.ch/event/767689/

75 peoples from 20 institutions From J-PARC

- Masatoshi Futakawa (Vice Director, SNS/ADS)
- T.Nakadaira (Neutrino Section Leader)
- S.Makimura, Shin-ichiro Meigo, T.Ishida

 1kilo-ton water Cherenkov detector located at 1-2km from the neutrino target and its position can be moved up/down to make measurements at different off-axis angle

20