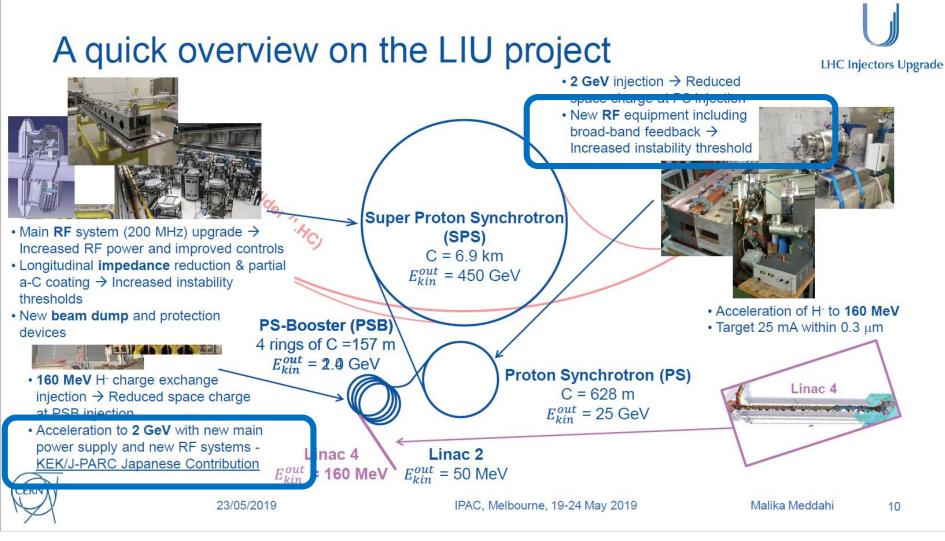


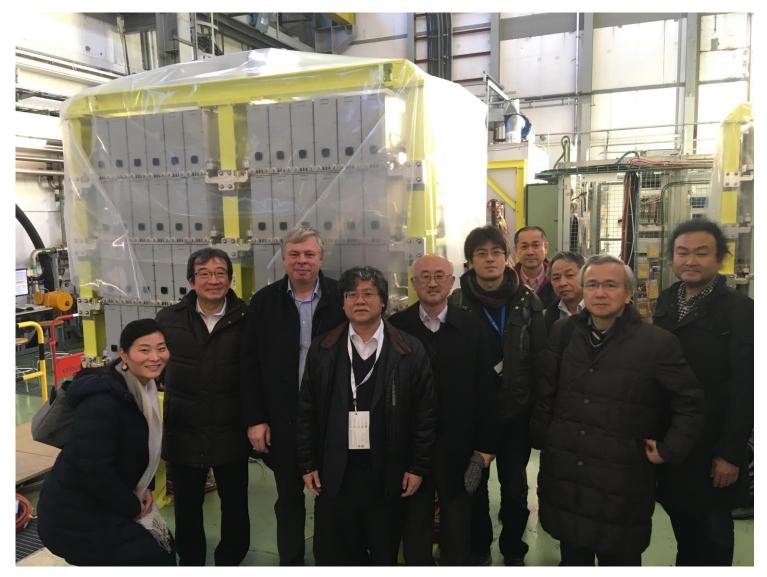
RADIATION

KEK Participation in the LHC Injector Upgrades (2019)

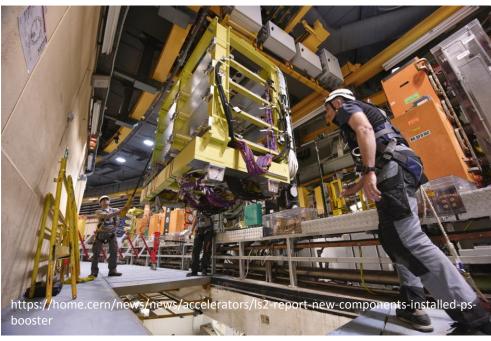
C. Ohmori, KEK/J-PARC



CÉRN

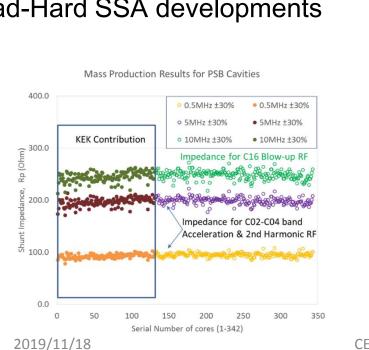

Contents

- LIU(LHC Injector Upgrade)
- Booster RF
 - Cavity
 - Rad-Hard Solid-State AMP
- PS Damper RF
- Contribution to Society
- To do
- Summary

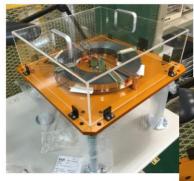

Injectors(Linac4, PSBooster, PS, SPS)

PS Booster New RF systems

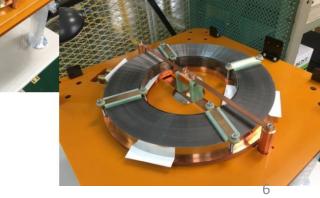
PS Booster New RF systems •New RF systems were installed !



Please see cavity in OPEN DAYS video (~8min.) https://www.youtube.com/watch?time_continue=4 640&v=U3vutvLlo-8



Contributions


- High impedance core by J-PARC-made Magnetic-annealing oven
- Contribution to mass production from **ATLAS-Japan**
- Quality check
- Beam loading Test at J-PARC in 2013
- Rad-Hard SSA developments

Power test of core at company

CERN KEK Comittee

Rad-Hard Solid-State AMP

Mitigation of Radiation effects was applied.

- So far, gain variation is ~1 dB up to ~2 kGy in mixed field and 8.8 kGy by Co60 !
 - 2 kGy means 100 years in PSB RF areas !
 - Results are published in IEEE TNS.

Rad-Hard Solid-State AMP

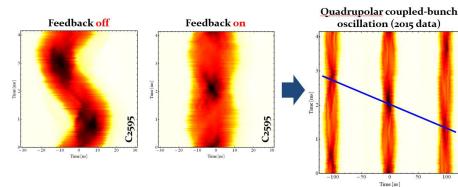
- PS feedback AMPs in 1k Gy/year environment to improve feedback gain.
 - Si-MOSFET
 - New! GaN

GaN Process Space Qualification Activities

Radiation Hardness

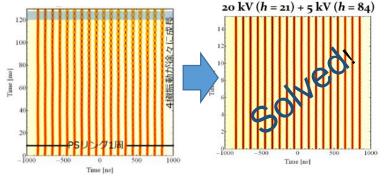
Activity	Description	Status
Total Ionizing Dose	Goal to Operate without radiation induced failures in a gamma radiation environment of a least 10 ⁶ rads.	Complete
Total Ionizing Dose Testing	GaN25 has been subjected to lonizing (Co-60) gamma radiation testing using the T1G4003532-FL GaN devices. These devices were subjected to Cobalt-60 radiation at doses ranging from 10 kRad to 500 kRad under bias conditions corresponding to normal amplifier operation. No significant changes were observed. Testing passed. 500kRads is the equivalent of 11.9 years at GPS orbit.	Testing completed by a lead customer/partner.
Proton Radiation Testing	2MeV Proton radiation testing of 2x50um GaN15 test FET structures was conducted by customer/partner to evaluate displacement damage effects. The fluence schedule ranged from 1×10^{12} to 6×10^{14} H ⁺ /cm ² and was designed to induce clear degradation in the DC FET characteristics. The onset of degradation occurred at ~1x10 ¹⁴ H+/cm ² , approximately the equivalent of 1,000 years in low earth orbit.	Testing completed by a lead customer/partner.
Heavy Ion Testing (SEE)	Customer performed heavy lon radiation testing on the TGA2214 (GaN15) at Vd = 22v & 28V with the following ions: Ar, Cu, Kr and Xe. The result showed this part does not latch under any pulsed exposure up to and including the heaviest ion of Xe (LET = 58.8 MeV/cm/g/cm^3) An enhanced RF power condition of Pin = +17 dBm was also tested and no latch-up occurred. Temporary current changes occurred most significantly at the highest ion level of Xe pulse. Nevertheless the post radiation testing showed no permanent performance change on any device.	Testing completed by a lead customer/partner.

So far ~2kGy was irradiated. GaN seems very stable without active compensation.


Collimator section in the J-PARC Main Ring is used for irradiation test.

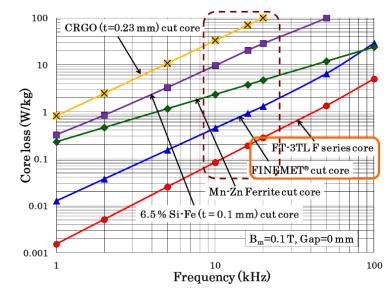
2019/11/18

PS Damper system


• Suffered by longitudinal coupled bunch instability.

• HL-LHC needs 2.6 x 10¹¹ ppb

Damper Cavity


Damper& 40 MHz Landau Cavities

2019/11/18

Technology Transfer and Contribution to Society

- J-PARC/KEK developed a large core production system- magnetic annealing oven in 2013.
- The oven may be used to produce transformer cores for power supplies of transportation systems.
 KEK and Hitachi Metal Ltd. agreed to use the system and R&D has been started in 2018.

Wideband Cavity Technology may contribute to downsize transformers, to reduce power consumption and to Conservation of the global environment.

2020- Plan

- Rad-Hard SSA R&D continues
 - Especially, GaN-base amplifiers looks promising.
 - Rad-test place: CHARM, PSI, J-PARC MR Col. and γ -ray
- Hardware, Beam tuning and study after LS2
 - JSPS budget for the CERN-KEK wideband RF collaboration (4.5Years)

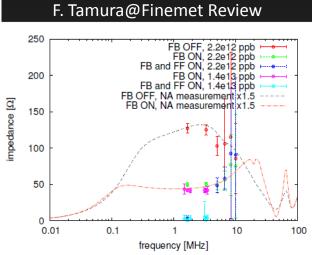
Summary

Collaborating for many years for ring RF. A lot of Benefits for both laboratories.

"you are ... different."

"Using Magnetic Alloy cores, more than 2 times field gradient than before. This high-field gradient cavity is beautiful."

From "アルキメデスのお風呂"


CERN KEK Comittee

Back up

PS Booster New RF systems

- Test of broadband RF system
 - At J-PARC (3GeV injection) in LS1

beam intensity 1.4 x 10¹³ ppb, 8 bunches

- At PSB, beam test after LS1
 - Beam Loading
 - Reliability (>99%)
 - Multi-harmonic RF
 - Braodband system was approved!

