

D1 Status

Tatsushi NAKAMOTO, KEK On behalf of CERN-KEK Collaboration for D1 Construction for HL-LHC

CERN-KEK Committee, 14th Meeting. Nov. 18, 2019. KEK

Acknowledgement

• KEK (in particular)

M. Sugano, N. Kimura, K. Suzuki, Y. Arimoto, R. Ueki, Y. Ikemoto, H. Kawamata, N. Okada, R. Okada, H. Ohhata, A. Terashima,

H. Ikeda, K. Tanaka, N. Ohuchi, T. Ogitsu.

- CERN (in particular)
- E. Todesco, A. Musso, H. Prin, D. Duarte Ramos, C. Scheuerlein,
- A. Foussat, B. Almeida Ferreira.
- Hitachi

A. Horikoshi, T. Chiba.

- Fusac Technologies
- T. Ichihara.

Japanese Contribution to HL-LHC: D1 magnets

- Beam separation dipole (D1) by KEK
 - Design study of D1 for HL-LHC within the framework of the CERN-KEK collaboration since 2011.
 - > 150 mm single aperture, 35 Tm (5.6 T x 6.3 m), Nb-Ti technology.
 - Development 2-m long model magnets (3 units) at KEK
- Deliverables for HL-LHC
 - 1 full-scale prototype cold mass (LMBXFP)
 - 6 series cold masses (LMBXF1-6)

Design parameters Collar

	Doorgin	parameter		
	A series production (7n	MBXES3 (2 m)	Shell	GFRP
Coil aperture				wedge
	150 11		×	
Field Integral	35 I M	9.5 I M		
Field (3D)	Nominal: 5.60 T, U	Itimate: 6.04 T		
Peak field (3D)	Nominal: 6.58 T, U	ltimate: 7.14 T		
Current	Nominal : 12.05 kA, l	Jltimate 13.14 kA		
Operating temperature	1.9 k			
Field quality	<10 ⁻⁴ w.r.t B_1 (F	R _{ref} =50 mm)		
Load line ratio (3D)	Nominal: 76.5%, Ultima	ate: 83.1% at 1.9 K		
Differential inductance	Nominal: 4.0) mH/m	Yoke	
Conductor	Nb-Ti: LHC-MB	outer cable		QPH
Stored energy	Nominal: 34	10 kJ/m	4	Insulation
Magnetic length	6.26 m	1.67 m		8 Brass shoe
Coil mech. length	6.58 m	2.00 m		
Magnet mech. length	6.73 m	2.15 m		13
Heat load	135 W (Magr	net total)	4 b	locks
	2 mW/cm ³ (C	oil peak)	44	turns 🚺
Radiation dose	> 25 M	Gy		

Large-aperture single layer coil \rightarrow Mechanical support of a coil is challenging

Production magnet: 7 m-long Three 2 m model magnets have been developed at KEK

Nb-Ti/Cu coil

Model magnet development in KEK

MBXFS1 cold test at Apr. 2016

- Insufficient training performance due to lack of azimuthal pre-stress
- Field quality could not be evaluated at nominal current due to low quench current

MBXFS1b cold test at Feb. 2017

- Improvement of training performance due to enhanced coil pre-stress
- Field quality could not be quantitatively discussed due to shim insertion

MBXFS2 cold test at Nov. 2018

- Significant change in yoke design → Magnetic and mechanical design update
- Wet-winding at coil end for coil end support
- Successful validation of QPH with meandering heater strips
- Large b₃ offset of ~20 unit from calculation

MBXFS3 cold test at Sep. 2019

- Basically same design as MBXFS2 → Reproducibility check
- Identical wedge as MBXFS2 \rightarrow a systematic large b_3 offset is expected
- Further enhancement of mechanical support at coil end.

3. Coil size meas.

Fabrication steps

4. QPH, insulation wrapping

7. Shell, end-ring welding

8. Axial pre-loading

9. Splicing

Mechanical support at coil end

Max displacement 3.4 mm in MBXFS1 → ~1 mm in MBXFS2

HILLHC PRO

Wet-winding

				A REAL PROPERTY OF THE OWNER OF T	
	MBXFS1	MBXFS1b	MBXFS2	MBXFS3	
Oversize of end spacers wrt MBXFS1 (mm)	_	0.9	1.14	1.14	
Wet-winding	No	No	Yes	Yes	
Tightening torque of bullets (Nm)	14	14	20	24	
Axial pre-load per coil end (kN)	_	_	30 – 43	25 – 40	
Additional shim on end saddle	_	_	_	t0.7 mm at max	
Gap filing with epoxy resin	No	No	No	Yes	

6

Training history

- Number of quenches to nominal (12.05 kA):8 in MBXFS2 → 2 in MBXFS3 Significant improvement in training up to nominal current in MBXFS3
- The ultimate current (13.14 kA) was achieved at the 16th quench.
- Current holding: 12.3 kA for 1hour, 13.3 kA for 35 min
- 4.4 K training: $I_{q,4.4K}$ =12.3 kA up to short sample limit
 - \rightarrow Quench current at 1.9 K is limited by mechanical support

Training history

- Number of quenches to nominal (12.05 kA):8 in MBXFS2 → 2 in MBXFS3 Significant improvement in training up to nominal current in MBXFS3
- The ultimate current (13.14 kA) was achieved at the 16th quench.
- Current holding: 12.3 kA for 1hour, 13.3 kA for 35 min
- 4.4 K training: $I_{q,4.4K}$ =12.3 kA up to short sample limit
 - \rightarrow Quench current at 1.9 K is limited by mechanical support

2nd cycle of MBXFS3

- The first quench current after full thermal cycle exceeded the ultimate current. (I_q=13.21 kA beyond the ultimate of 13.14 kA)
- Very good training memory

MFM: Transfer function

TFs of MBXFS2 and 3 agree within 0.7 % at nominal operating current

MFM: at the magnet center (I=3kA, 12.05kA)

#2-#3 comparison:

Good agreement in the higher allowed multipole ($n \ge 5$)

~3 unit difference observed in the geometrical b3, and reduced to ~1 unit at $I_{nominal}$

Status of Prototype

Design Parameters

- Nominal current and field, field integral: 12070 A, 5.58T, 35 Tm
- Design pressure and operating temperature: 2.0 MPa, 1.9 K
- Pressure test at 2.5 MPa
- He leak rate below 1 x 10⁻¹⁰ Pa m³/s
- Cold mass length and distance between saddles: 7370 mm and 3900 mm
- The detail of extremities given by CERN
 - Two Hell HX pipes in line with MQXF (X1, X2)
 - Two Hell conduction lines (L1, L2)
 - Bus bars interconnection line (MN)

Design for MBXFP1

For 7m long full-scale prototype, the ROXIE model with appropriate **azimuthal insulation thickness of 0.122 mm** including the prestress enhancement is used for the design.

 In addition, the effects of oval structural deformation, coil deformation due to Lorenz force and unpredictable iron saturation effect in 3D model at 12 kA are taken into account for the 7m long full-scale prototype.

Opera

	MBXFS2 and 3	MBXFP1 v7.1.0
Target b3 at 3kA	0	-5
φ1	1.1346	1.2962
φ2	27.8721	27.9747
φ3	50.2969	50.4743
φ4	70.6992	70.841
α2	26.0000	27.4005
α3	52.4212	52.34
α4	68.0015	68.9141
Azimuthal insulation thickness (mm)	0.130	0.122

B1=5.578 T @ 12070A

	Ассер	Expected				
	crite	total				
		integral				
	LL	UL	v. 7.1.0			
b ₂	-0.800	0.800	0.00			
b ₃	-2.900	2.900	$0.01^{+1.61}_{-1.06}$			
b ₄	-0.500	0.500	0.00			
b ₅	-1.500	1.500	0.19			
b ₆	-0.240	0.240	-0.01			
b ₇	-0.660	0.660	-0.63			
b ₈	-0.110	0.110	-0.01			
b ₉	-0.260	0.260	-0.22			
b ₁₀	-0.030	0.030	0.00			
b ₁₁	-0.076	0.076	-0.31			
a ₂	-0.800	0.800	-0.02			
a ₃	-2.900	2.900	1.61			
a ₄	-0.500	0.500	0.00			
a ₅	-1.500	1.500	-0.14			
a ₆	-0.240	0.240	0.00			
a ₇	-0.660	0.660	0.14			
a ₈	-0.110	0.110	-0.01			
a ₉	-0.260	0.260	-0.03			
a ₁₀	-0.030	0.030	0.00			
a	-0.076	0.076	0.02			

Overview of Production of D1 Prototype and Series

- Production of 7-m cold masses (prototype and series) by a manufacturer.
 - Involvement of Japanese firms already in model magnet development:
 smooth technical transfer, accurate (lower) cost estimate.
 - > A Multi-year contract given to Hitachi (May 2019)
 - Covering construction of 1 prototype & 4 series cold masses
 - Another contract for 2 remaining cold masses will be made in JFY 2021 and 2022.
 - \geq To be fitted to the delivery schedule.
- Raw materials procured by KEK: timely provision to the manufacturer.
 - > Due to some reasons: budget limitation, PED, cobalt content.
 - Low cobalt iron and stainless steel, radiation resistant GFRP, etc.
- Supplies from CERN:
 - insulated SC cables,
 - base laminates of QPH
 - HX tubes
 - insulated beam tubes
 - end-covers
 - Extremity parts such as flare flanges (under discussion).

Agreement of money transfer using Mixed Flow Budget Code in preparation.

Schedule

M Mirror or single coil test

Test at CERN

				· crticul test		o onee (meen	mieta moter)	D LOULU					
			Cold mass assembly Cryostating (phases 1/2/3) Decryostating Horizontal test Beamscreen+BPM			т Contra	F Test at	FNAL					
						D Delivery	s Test at	Saclay					
								L Test at	LASA				
							K Test at KEK						
							U Test at FREIA						
			Available for STRING					I Test at IMP					
DI	MBXF81 - short model 1 MBXF82 - short model 2 MBXF83 - short model 3 MBXF91 - prototype MBXF1 - series 1 MBXF2 - series 2 MBXF3 - series 3 MBXF4 - series 4 MBXF5 - spare 1 MBXF6 - spare 2	T	K	K	D	C 2+3 K			3 2 D K	3 1 C 2 3 D 1 C 2 K	-1 -1 D K	C	
		20	19	2020		202	1	2022		2023		2024	

- Contract with Hitachi in May 2019.
- Some initial delay for start-up at Hitachi was observed.

Magnet construction

- KEK and CERN expressed big concerns about the schedule delay.
- Hitachi has been pursuing the schedule recovery plan underway.
- Prototype
 - The fabrication will start in Feb. 2020 and the vertical cold test is planned in August.
 - Need a revision of cold mass assembly schedule in Oct. 2020.
- 1st series

 Fabrication will only start after the vertical cold test of the prototype KEK

Summary

2-m long model development

- KEK has developed three 2 m-long model magnets (MBXFS1, 2 and 3) with one variant (MBXFS1b) of the beam separation dipole D1 for the HL-LHC upgrade.
- The latest 3rd model with an improvement of mechanical support showed a good training performance
 - 1st cycle;
 - Reaching the nominal current after the first quench.
 - Achievement of current hold (10 min.) w/o quench at the ultimate current.
 - 2nd cycle
 - the first quench beyond the ultimate. Excellent training memory.
- It was concluded that a large b₃ around 20 unit consistently observed in MBXFS2 and 3 was caused by the inadequate design of coil wedges.

7-m long prototype and series magnet cold mass

- New coil cross section with minimal b₃ has been designed and be implemented in the prototype.
- Contract of D1 cold mass production was given to Hitachi. The coil fabrication will be started in Feb. 2020.
 - Documentation, drawings, procurement are underway at KEK and Hitachi.
- Renovation of test facility at KEK is on-going.

