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Quick recap

• Fellowship: September 2018 - August 2020 
• Second postdoctoral job 

• Ph.D. Carnegie Mellon University, 2015 
• First postdoc at MIT, 2015-2018 

• Had planned to join ATLAS as a CERN fellow, but decided to 
continue on CMS to maximize output 

• Interests 
• Exploration of exotic properties of the Higgs boson 
• Physics analyses with photons in the final state 
• Software and computing technologies for HEP
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Projects

• Planned at the start of the year 
• Measurement of the differential production cross section of 

the Higgs boson in the WW decay channel 
• Search for an exotic decay of the Higgs boson into a photon 

and a dark photon 
• CMS Phase-II endcap calorimeter (HGCal) trigger 

development 
• Study of deep learning application to complex calorimetry 

• New involvements 
• Measurement of electroweak-exclusive single photon 

production (qqγ) cross section 
• Subconvenership at the SUSY Photons group
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H→WW differential cross section

• Indirect probe of non-SM Higgs couplings 
• Was an uncovered topic with straightforward prospect 
• Good opportunity to absorb know-how in SM Higgs analyses 

• Original plan: have a preliminary result for Moriond (March) with 
2016 + 2017 data, publication with full Run 2 data in summer 

• Problem in background estimation method found in February 
• Method revision required 4 months of work 
• Meanwhile, decided to include 2018 data already for preliminary 

result 
• Presented at Higgs Couplings 2019 (September) 
• Now working on the paper manuscript 

• Expected to be the first full Run 2 Higgs paper from CMS
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H→WW differential cross section

• Presented by P. Lenzi (INFN Firenze)
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Full run 2 H → WW Differential analysis

Fiducial and differential cross sections with 137/fb in H → WW

20

Uncertainties of the same 

order as di-photon analyses 

in #jets and similar in high 

ptH.

Unfolding with Tichonov 

regularization embedded as 

a constraint in the 

likelihood function

Overall fiducial 

measurement competitive 

with di-photon (with larger 

theoretical uncertainties)



Search for H→γγD

• "Higgs cannot be the end of the story" 
• New physics naturally couples to Higgs ("portal") 

• Non-SM coupling induces non-SM decays of h(125) 
• H→γγD predicted by an interesting model with a dark sector 

and a dynamic origin of Yukawa couplings [1] 
• Started a search program while at MIT, continuing
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8.3 Generic model with effective loops and coupling modifier ratios 27

compared to Ref. [55]. This improvement is because of the improved sensitivity to the ttH
production mode as described in Section 7.
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Figure 12: Results within the generic k-framework model with effective loops and with the
constraint |kW|, |kZ|  1 (same sign of kW and kZ), and with Binv > 0 and Bundet > 0 as free
parameters. Scan of the test statistic q as a function of Binv (left), and 68 and 95% CL regions for
Binv vs. Bundet (right). The scan of the test statistic q as a function of Binv expected assuming
the SM is also shown in the left figure.

In both of the generic k models, the best fit point for kW is negative. The value of q(kW) as a
function of kW in the two cases is shown in Fig. 13. While different combinations of signs for
kW and kZ are shown, the minimum value of q across all combinations is used to determine the
best fit point and the 1s and 2s CL regions.

The preferred negative value of kW is due to the interference between some of the diagrams
describing tH production, which contributes in several analyses entering the combination. In
particular, the excess in the ttH tagged categories of the H ! gg analysis can be accounted for
by a negative value of kW as this increases the contribution of tH production. In these models,
the H ! gg decay is treated as an effective coupling so that it has no dependence on kW.
This means that a negative value of kW will not result in excesses in the other categories of the
H ! gg analysis.

Using Eq. (7), this model is also reinterpreted as a constraint on the total Higgs boson width,
and the corresponding likelihood scan is shown in Fig. 14. Using this parametrization, the total
Higgs boson width relative to the SM expectation is determined to be GH/GSM

H = 0.98+0.31
�0.25. The

different behavior between the observed and expected likelihood scans for large GH/GSM
H is due

to the preference in data for the ktkW < 0 relative sign combination.

An additional fit is performed assuming that the only BSM contributions to the Higgs couplings
appear in the loop-induced ggH and H ! gg processes. In this fit, kg and kg are the POIs, Binv
and Bundet are floated, and the other couplings are fixed to their SM predictions. The best fit
point and the 1s and 2s CL regions in the kg-kg plane for this model are shown in Fig. 15.

8.3 Generic model with effective loops and coupling modifier ratios

An analogous parametrization to the ratios of cross sections and branching fractions described
in the previous section can be derived in terms of ratios of the coupling modifiers (lij = ki/kj).
In this parametrization a reference combined coupling modifier is defined that accounts for

SM-Unpredicted decay 
unexcluded branching

H

S~

γ

γ~

[1] Gabrielli et al.1405.5196



Search for H→γγD

• Search in three Higgs production modes:  
ggH, qqH, ZH 

• ZH search completed in May by MIT colleagues 
• YI was in supporting role 
• Featured by the collaboration as one of the  

first full Run-2 data analyses 
• Now working on the qqH channel
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SMP EWK gamma

• Joined members of the CERN CMS group (CMG) in the 
project to measure the cross section of electroweak-exclusive 
single photon production 

• Final state similar to qqH→γγD 

• Similar challenges, similar solutions 

• In particular: largest obstacle = modeling QCD background 
• Need higher-order simulation 
• CMS-standard NLO calculation ("FxFx merging") not applicable 
• Introducing new method ("UNLOPS") from literature
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bosons in proton collisions at 7 TeV [2], at 8 TeV [3, 4], and at 13 TeV [5, 6] The electroweak pro-44

duction of a W boson in association with two jets (VBF W, or EW Wjj) has also been measured45

in proton collisions at 7 and 8 TeV [7, 8].46

The measurement of the VBF process with a photon final state (VBF g or EW gjj) has also been47

proposed [9] but not measured yet. With respect to the W and Z productions, the VBF pro-48

cess with a photon offers larger expected total cross sections, and the possibility to investigate49

thoroughly the WWg vertex in a complementary way and at the highest energy tails.50

Figure 1: Diagrams that produce gjj final states in proton-proton collisions with purely elec-
troweak interactions (a3

W
). (left) Vector Boson Fusion. (right) bremsstrahlung.

The most relevant tree level diagmams that characterise the EW gjj signal definition are shown51

in Fig. 1. The signal process needs to be defined with a cut on the di-parton invariant mass (mjj)52

well above the W and Z poles, so to avoid contributions from their on-shell decays to hadrons.53

Figure 2: Typical photon plus two jets diagrams that produce gjj final states in proton-proton
collisions with mixed electroweak and QCD interactions (aWa2

S
). (left) A process that may

interfere with the pure electroweak production. (right) A process that does not interfere with
the pure electroweak production.

Background gjj contributions will mostly originate from mixed EW and QCD processes as the54

ones shown in Fig. 2. Particular care must be taken concerning the possible interference effects55

between signal and background processes, in the case of identical initial and final states.56
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SUSY photons subconvenership

• CMS supersymmetry search group organized by final state 
signatures: hadronic, leptons, photons, etc. 
→ Facilitate analysis knowledge sharing 

• Previous photon subgroup coordinator ("subconvener") got a 
job outside CMS → YI recruited as replacement 
• Have experience with Ph.D. thesis work: 

SUSY with photon + lepton 
• Coordinating and advising 4 analyses 
• Also launching a new analysis project for first year of Run 3
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Deep learning for HGCal reconstruction

• Joint effort by subsets of CMG & FNAL CMS groups 
• Focus on graph neural network (GNN) architecture 

• Most well-known DL architecture = convolutional (CNN) 
• CNN only works on regular grid (e.g. images) 
• GNN allows pattern recognition over irregular geometry 

• Paper on prototype model published in February [1] 
• Real-life application to HGCal  

under development 
• Will present at NeurIPS '19
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[1] Qasim et al. 1902.07987

6 S.R. Qasim et al.: Distance-weighted graph networks for irregular particle-detector geometries

– GarNet model: The original vertex features are con-
catenated with the mean of the vertex features and
then passed on to one dense layer with 32 nodes and
tanh activation before entering 11 subsequent Gar-
Net layers. These layers contain S = 4 aggregators, to
which FLR = 20 features are passed, and FOUT = 32
output nodes. The output of each layer is passed to
the next and added to a vector containing the con-
catenated outputs of each GarNet layer. The latter
is finally passed to a dense layer with 48 nodes and
ReLU activation.

In all cases, each output vertex of these model building
blocks is fed through one dense layer with ReLU activation
and three nodes, followed by a dense layer with two output
nodes and softmax activation. This last processing step
determines the energy fraction belonging to each shower.
Batch normalisation [45] is applied in all models to the
input and after each block.

All models are trained on the full training data set us-
ing the Adam optimizer [46] and an initial learning rate of
about 3⇥ 10�4, the exact value depending on the model.
The learning rate is reduced exponentially in steps to the
minimum of 3⇥ 10�6 after 2 million iterations. Once the
learning rate has reached the minimum level, it is modu-
lated by 10% at a fixed frequency, following the method
proposed in Ref. [47].

7 Clustering performance

All approaches described in Section 6 perform well for
clustering purposes. An example is shown in Fig. 3, where
two charged pions with an energy of approximately 50GeV
enter the calorimeter. One pion loses a significant frac-
tion of energy in an electromagnetic shower in the first
calorimeter layers. The remaining energy is carried by a
single particle passing the central part of the calorimeter
before showering. The second pion passes the first layers
as a minimally ionizing particle and showers in the cen-
tral part of the calorimeter. Even though the two showers
largely overlap, the GravNet network (shown here as an
example) is able to identify and separate the two showers
very well. The track within the calorimeter is well identi-
fied and reconstructed and the energy fractions properly
assigned, even in the parts where the two showers heav-
ily overlap. Similar performance can be observed with the
other investigated methods.

Quantitatively, the models are compared with respect
to multiple performance metrics. The first two are the
mean and the variance of the loss function value (µL and
�L) computed according to Equation (2) over the test
events. The mean and the variance of the test shower
response (µR and �R), where the response is defined in
Equation (3), are also compared. While the test shower re-
sponse follows an approximately normal distribution over
majority of the test events, a small outlier population,
where the shower clustering fails, are seen to lead µR and
�R to misparametrize the core of the distribution. There-
fore, response kernel mean µ⇤

R and variance �⇤
R, restricted

(a) Truth

(b) Reconstructed

Fig. 3: Comparison of true energy fractions and energy
fractions reconstructed by the GravNet model for two
charged pions with an energy of approximately 50GeV
showering in di↵erent parts of the calorimeter. Colours in-
dicate the fraction belonging to each of the showers. The
size of the markers scales with the square root of the en-
ergy deposit in each sensor.

to test showers with response between 0.2 and 2.8, are
added to the set of evaluation metrics. In addition, we also
compare the clustering accuracy (A), defined as the frac-
tion of showers with response between 0.7 and 1.3. Finally,
the above set of metrics is duplicated, with the second set
using only the sensors with energy fractions between 0.2
and 0.8 in the computation of the loss function and the
response. The second set of metrics characterizes the per-
formance of the models in particularly challenging case of
reconstructing significantly overlapping clusters. The two
sets of metrics are called inclusive and overlap-specific in
the remainder of the discussion.
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HGCal trigger development

• Lower activity level than planned; prioritized physics analysis 
• Also explored GNN application in this context 
• Problem: running high-level machine learning inference at 

level-1 trigger → FPGA implementation of neural networks 
• HLS4ML [1] framework allows translating neural network 

architectures specified in python into FPGA firmware 
• GNN not supported yet, helping expand
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[1] Duarte et al. 1804.06913



Prospects for the next year

• Winter & spring: complete H→γγD and EWK γjj analyses 
• Continue with more Higgs exotics analyses 
• Publish H→WW differential measurement paper in spring 

• Another paper planned for later in the year with more 
observables and interpretations 

• SUSY photons subconvenership through end of August 
• HGCal trigger 

• Continue the current GNN investigation 
• Also perform more "grounded" studies: algorithm tuning, 

calibration, etc.
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Summary

• Work load distribution and timespan of projects somewhat 
diverged from original plan 
• HWW took longer with higher level of required commitment 
• Additional analysis involvements and responsibilities 

• Nevertheless, first year has been fruitful 
• Most importantly, acquired many new skills 

• Would like to have more physics output in the second year
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