Computing Resources Scrutiny Group Report

Pekka K. Sinervo, C.M., FRSC University of Toronto

For the Computing Resources Scrutiny Group

October 29, 2019

Pekka Sinervo, C.M.

C-RSG membership

C Allton (UK)	J Hernandez (Spain)
V Breton (France)	J Kleist (Nordic countries)
G Cancio Melia (CERN)	H Meinhard (CERN, scient. secr.)
P Christakoglou (Netherlands)	P Sinervo(Canada)
A Connolly (USA)	V Vagnoni (Italy)
F Gaede (Germany)	

• V Vagnoni is the new representative for Italy. He had observed the spring scrutiny and was an active member this fall

• C-RSG thanks the experiment representatives and to CERN management for their support

Pekka Sinervo, C.M.

October 29, 2019

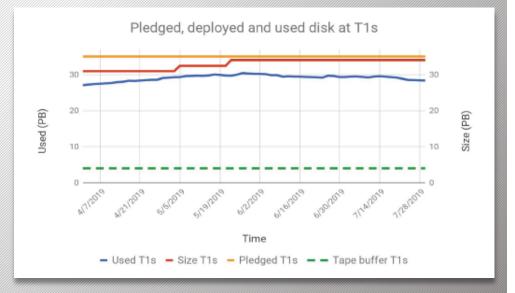
Fall 2019 Scrutiny Process

- The four LHC experiments gave updates on their computing and data processing activities and plans
 - Described computing activities for 2019 year (April 2019 March2020)
 - Updated plans for the 2020 year pledges approved at Spring 2019 RRB meeting
 - Updated estimates for 2021 year (April 2021 March 2022)
- No surprises for 2019 and 2020 years
 - Continue data processing and scientific analysis of Run 2 data
 - Preparations continuing for Run 3 and some work on HL-LHC
- 2021 presents greater uncertainty
 - Biggest uncertainty is volume of LHC data

Resource Requirements for 2020 and Estimates for 2021

- 2020 is part of Long Shutdown 2
- Total increases below "flat budget model"
- Computing models being changed for Run-3, so some uncertainty for 2021 and beyond

Pekka Sinervo, C.M.


ALICE Computing Activities

Run 2 data processing dominates current activities

- Pass 2 of 2018 Pb-Pb data and MC
- Pass 2 of 2018 pp and Pass 3 of 2017 pp

Together, result in 10 PB disk output

2019 resources being utilized primarily for simulation and analysis

Pekka Sinervo, C.M.

October 29, 2019

Alice Requests for 2020 and Estimates for 2021

			19		2020		2021	
ALICE		CRSG recomm.	Pledged	Request	2020 req. /2019 CRSG	C-RSG recomm.	Request	2021 req. /2020 CRSG
	Tier-0	430	350	350	81%	350	471	135%
	Tier-1	365	331	365	100%	365	498	136%
CPU	Tier-2	376	370	376	100%	376	515	137%
CPU	HLT	n/a	n/a	n/a	n/a	0		
	Total	1171	1051	1091	93%	1091	1484	136%
	Others							
	Tier-0	34.3	31.2	31.2	91%	31.2	45.5	146%
Disk	Tier-1	37.9	35.1	44.0	116%	44.0	53.3	121%
DISK	Tier-2	33.9	33.5	39.0	115%	39.0	44.8	115%
	Total	106.1	99.8	114.2	108%	114.2	143.6	126%
	Tier-0	44.2	44.2	44.2	100%	44.2	80.0	181%
Tape	Tier-1	37.7	41.1	37.7	100%	37.7	55.0	146%
	Total	81.9	85.3	81.9	100%	81.9	135.0	165%

 Flat CPU utilization in 2020, allows for 3 passes through p-p and Pb-Pb data

- "Flat-budget" increases for disk at T1 & T2
 - T0 increase in disk in 2019 sufficient for 2020 operations
 - No additional tape space for 2020
- Increases in CPU and storage in 2021
 - Run 3 data-taking
 - Increased volume due to upgrades

Pekka Sinervo, C.M.

ALICE Recommendations

- ALICE-1 The C-RSG endorses the proposal by ALICE, supported by GSI, to use the existing GSI Tier-2 centre as an analysis facility starting in 2020.
- ALICE-2 The C-RSG requests closer tracking of resources being used for the Run 2 and Run 3 activities. The C-RSG requests that a description be provided of which activities for Run 2 processing and analysis will occur within each year and how the computational resources will be split between these activities.
- ALICE-3 Request milestones and schedule Gantt chart –showing time required for each step (or planned step) in processing of the pp and Pb-Pb data
- ALICE-4 The C-RSG requests a high level list of milestones for the development of the O2 processing framework and simulation framework.
- ALICE-5 ALICE provide an update of the performance of the ALICE simulations and compare it to the requirements for Run 3 (in particular the GEANT3 vs Geant4 framework performance).

Pekka Sinervo, C.M.

7

ATLAS Computing Activities

ATLAS 2019 computing dominated by

- Generation of Run-2 simulation samples
- Production of intermediate datasets
- Pb-Pb reprocessing and
- Validation of Run-3 software framework
- Have taken advantage of beyond-pledge CPU resources
 - 4700 kHS06 used vs 2800 kHS06 pledged
 - Disk utilization at capacity, as improved Run-2 simulation datasets are created
 - Developing smaller derived datasets (size & number)

Pekka Sinervo, C.M.

	2019 Agreed @ Oct 2018 RRB	2019 pledges	2020 Agreed @ April 2019 RRB	2021 Request @ Oct 2019 RRB	Balance 2021 wrt 2020 request	
TO CPU (kHS06)	O CPU (kHS06) 496 (*) 496 (*)		496 (*)	550	11% (**)	
T1 CPU (kHS06)	1057	1084	1057	1230	16%	
T2 CPU (kHS06)	1292	1293	1292	1500	16%	
SUM CPU	SUM CPU 2760 2788		2760 3280		19%	
TO DISK (PB)	D DISK (PB) 27 26		27 30		11%	
T1 DISK (PB)	DISK (PB) 88 94		88	107	21%	
T2 DISK (PB)	DISK (PB) 108 101		108	132	21%	
SUM DISK	223	221	223	269	20%	
TO TAPE (PB)	FO TAPE (PB) 94 94		94	97	3%	
T1 TAPE (PB)	221	217	221	249	13%	
SUM TAPE	315	311	315	346	10%	

October 29, 2019

ATLAS Requests for 2020 and Estimate for 2021

		201	.9	2020			20	21
ATLAS		CRSG recomm.	Pledged	Request	2020 req. /2019 CRSG	C-RSG recomm.	Request	2021 req. /2020 CRSG
	Tier-0	411	411	411	100%	411	550	134%
	Tier-1	1057	1083	1057	100%	1057	1230	116%
CPU	Tier-2	1292	1293	1292	100%	1292	1500	116%
CPU	HLT	n/a	0	0	n/a	0	0	n/a
	Total	2760	2787	2760	100%	2760	3280	119%
	Others			0		0%		
	Tier-0	27.0	26.0	27.0	100%	27.0	30.0	111%
Disk	Tier-1	88.0	94.4	88.0	100%	88.0	107.0	122%
DISK	Tier-2	108.0	101.2	108.0	100%	108.0	132.0	122%
	Total	223.0	221.6	223.0	100%	223.0	269.0	121%
	Tier-0	94.0	94.0	94.0	100%	94.0	97.0	103%
Таре	Tier-1	221.0	216.8	221.0	100%	221.0	249.0	113%
	Total	315.0	310.8	315.0	100%	315.0	346.0	110%

 2020 "flat-flat" growth in CPU, given LS2 and Run-3 preparations

- Driven by 20B MC event simulation
- Large T2 utilization

2021 disk and tape storage modest increase

- Tape "gap" of 230 PB used vs 311 pledged
- Expects to need that over next 2 years
- Disk footprint being reduced using new dataset formats

ATLAS Recommendations

- ATLAS-1 C-RSG applauds ATLAS for introducing the new more compact data formats and the initiative to reduce the overall disk footprint by 30%.
- ATLAS-2 C-RSG recommends ATLAS to keep working with Monte Carlo generator authors to overcome the inefficiencies arising from negative event weights.
- ATLAS-3 C-RSG requests ATLAS to produce a Gantt chart with the planned activities for 2021 (e.g., reconstruction, reprocessing & Monte Carlo) that lead to the resource requests in the next report.

CMS Computing Activities

• The main 2019 computing activities for CMS are:

- Complete legacy processing of all Run 2 data
- Run 2 analyses based on the legacy samples
- Run 3 MC production of 10B events for scale test
- HL-LHC Monte Carlo production for the preparation of various TDRs
- Deployment and readiness demonstration for new computing infrastructure for Run 3, like the introduction of Rucio as data management system
- Freeing of disk and tape resources for Run 3

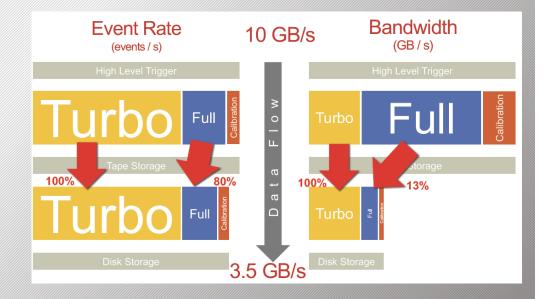
Year	Start	End	Live Seconds (pp)		
Resource Year: 2019	April 2019	March 2020	0 s (LS2)	N/A	0 s (LS2)
Resource Year: 2020	April 2020	March 2021	0 s (LS2)	N/A	0 s (LS2)
Resource Year: 2021	April 2021	March 2022	3.0 Ms (expected)	45 (expected)	1.2 Ms (expected)
Resource Year: 2022	April 2022	March 2023	6.5 Ms (expected)	55 (expected)	1.2 Ms (expected)

October 29, 2019

CMS Requests for 2020 and Estimates for 2021

		201	19		2020		20	21
CMS		CRSG recomm.	Pledged	Request	2020 req. /2019 CRSG	C-RSG recomm.	Request	2021 req. /2020 CRSG
	Tier-0	423	423	423	100%	423	517	122%
	Tier-1	650	620	650	100%	650	650	100%
CPU	Tier-2	1000	960	1000	100%	1000	1200	120%
	HLT	n/a	n/a	n/a	n/a	n/a	n/a	n/a
	Total	2073	2003	2073	100%	2073	2367	114%
	Others						50	
	Tier-0	26.1	26.1	26.1	100%	26.1	31.0	119%
Disk	Tier-1	68.0	63.4	68.0	100%	68.0	77.0	113%
DISK	Tier-2	78.0	72.0	78.0	100%	78.0	93.0	119%
	Total	172.1	161.5	172.1	100%	172.1	201.0	117%
	Tier-0	99.0	99.0	99.0	100%	99.0	144.0	145%
Таре	Tier-1	220.0	188.8	220.0	100%	220.0	245.0	111%
	Total	319.0	287.8	319.0	100%	319.0	389.0	122%

- 2020 requests constant resources
 - Sufficient for Run 2 legacy work
 - Preparations for Run 3
- 2021 increases are driven by Run 3 assumptions
 - Increase in T0 tape based on contingency assumptions of 42 fb-1 of data delivered by the LHC


CMS Recommendations

- **CMS-1** C-RSG recommends continued work with Monte Carlo generator authors to ameliorate the inefficiencies created by negative event weights
- CMS-2 C-RSG requests CMS to produce a Gantt chart with the planned activities for 2021 (e.g., reconstruction, reprocessing & MC) that will motivate the resource requests
- **CMS-3** C-RSG requests CMS provide in future requests a tabular breakdown per activity of the resource requests (as provided this time after the Fall 2019 face-to-face meeting).

LHCb Computing Activities

14

- Analysis of Run 2 data dominates LHCb the 2019 and 2020 resource requirements
 - Simulation takes 90% of CPU resources and 35% of disk
 - Much of the focus is on continuing refinement of the Run 3 computing model
 - Working to optimize CPU, disk and tape utilization

October 29, 2019

Pekka Sinervo, C.M.

LHCb Requests for 2020

		20:	19	2020			20	21
LHCb		C-RSG recomm.	Pledged	Request	2020 req. /2019 CRSG	C-RSG recomm.	Estimate	2021 est. /2020 CRSG
	Tier-0	86	86	98	114%	98	112	114%
	Tier-1	271	268	328	121%	328	367	112%
CPU	Tier-2	152	193	185	122%	185	205	111%
CPU	HLT	10	10	10	100%	10	50	500%
	Total	519	557	621	120%	621	734	118%
	Others		10	10			50	
	Tier-0	14.1	13.4	17.2	122%	17.2	20.7	120%
Disk	Tier-1	27.9	29	33.2	119%	33.2	41.4	125%
DISK	Tier-2	6.8	4	7.2	106%	7.2	8	111%
	Total	48.8	46.4	57.6	118%	57.6	70.1	122%
	Tier-0	35.0	35	36.1	103%	36.1	56.0	155%
Tape	Tier-1	50.9	53.1	55.5	109%	55.5	96.0	173%
	Total	85.9	88.1	91.6	107%	91.6	152.0	166%

- 2020 usages will be consistent with "flat budget " model
 - Expect increased use of HLT farm
- 2021 large increase in disk and tape resources
 - Reflects the change in computing model
 - Note that the tape increase of 55-73% is based on 3 fb⁻¹ scenario
 - A further increase in tape (80 PB) would be needed to store data in 7 fb⁻¹ scenario

LHCb Recommendations

- LHCb-1 C-RSG finds that the LHCb 2021 estimates conform to the needs resulting from the upgrade LHCb computing model. The C-RSG notes that some work is still needed in the commissioning of the software trigger and the parametric MC simulation.
- LHCb-2 C-RSG notes that 60 PB increase in tape storage for 2021, while CPU and disk increases are 10 to 20%. For 2022 and 2023, LHCb predicts 100 PB/year of tape and increases of 70-80% per year in CPU and disk. No increase in computing resources is foreseen for the LS3 period (2024 and 2025). The C-RSG encourages funding agencies to consider multi-year funding in order to smooth out this Run 3 profile.
- LHCb-3 C-RSG requests LHCb to estimate computing resources needed for the heavy ion run in 2020 and include the corresponding requests in the next scrutiny round.
- LHCb-4 C-RSG recommends LHCb continue investing in workload management system and application software to enable HPC opportunistic resources.
- LHCb-5 C-RSG encourages the ongoing work in organized analysis to reduce storage and CPU usage resulting from individual user analyses.

Pekka Sinervo, C.M.

16

C-RSG Summary

- Overall picture for 2019 and 2020 is consistent with plans
 - Legacy production of Run 2 data dominates
 - Preparation for Run 3 and HL-LHC moving forward
 - Plans for 2020 fit within the resources pledged to all experiments
 - C-RSG recommends that these be made available
- 2021 resource estimates still evolving, but increasing confidence
 - Work underway across all experiments to increase efficiency of utilization
- Tape utilization is still one area where further work is being done
- Overall, well positioned for Spring 2020 scrutiny

Pekka Sinervo, C.M.

17

2021 Outlook Relative to 2018 Becoming Refined

- ALICE: Significant changes in computing model
 - Result in +85% in T0 tape and +35% in T1 tape (double current "flat" budget model)
 - Disk & CPU have 60% increase each, or about "flat budget" over two years from 2018
- ATLAS: Increases driven by higher luminosity running, but lower than 6 months ago
 - T0 CPU increases by 30% from 2018 levels for Run 3
 - Disk resources overall increase 40% from 2018 levels for Run 3
 - Tape needs will increase by ~15% for Run 3 (but gap between current usage and pledge)
- CMS: Increases come from higher luminosity, and also very uncertain
 - Overall CPU +24% from 2018 for Run 3
 - Disk space up 37% and tape space up 48% for Run 3
- LHCb: Experiment vastly different (30x data volume)
 - 70% of data collected in TURBO mode
 - Increases of disk and tape resources of 70% per year over 2021 and 2022
 - CPU increases that are comparable, but estimates uncertain

Pekka Sinervo, C.M.

Comments and Recommendations

- ALL-1 The C-RSG reaffirms that the computing resources requested by the four collaborations and pledged by the WLCG for the 2020 year are essential to address their approved physics programs.
- ALL-2 The C-RSG recommends that the collaborations use a common approach to estimating tape resources at the Tier-0 and Tier-1 centers. The actual tape resources required for data storage should be the key driver for the future estimates, and the logistics of ``repacking'' data should be coordinated with the sites providing the tape storage. The scrutiny group understands that the WLCG Management Board is addressing this issue. The C-RSG notes that several collaborations have not used all of the Tier-1 tape resources pledged to them over the last several years.
- ALL-3 The computing resources required for 2021 may exceed the available capabilities in the event that the amount of data collected by the experiments significantly exceeds baseline. The C-RSG recommends that a common strategy be developed to mitigate this, such as preparing to have Tier-0 provide the necessary tape resources to temporarily ``park'' the data until processing and disk resources become available.

19

Pekka Sinervo, C.M.