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GEM DETECTOS:

For Gas Electron Multiplier (GEM) detectors a quantitative understanding

of the gas gain is still lacking.
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Gas gain = the multiplication factor between initial and final

amount of electrons.
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Effective gas gain = the multiplication factor between initial and final
amount of electrons which reach the anode.
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AVENUES OF EXPLORATION:

We have explored this discrepancy 3! - GEM bach T Gharged
. . GEM batch 1 (uncharged)
between experiment and theory in GEM batoh 2 (charged) g
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Effective gain for a single GEM detector
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SURFACE POTENTIAL CALCULATIONS:

Besides the accumulation |
of avalanche charge on the R =Rs
GEM we calculate the —T

surface potential using the
surface resistivity of

polyimide.

R = 2Rs

Units: ¢/
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SURFACE POTENTIAL CALCULATIONS:

Modeling the hole as a double cone and dividing it into strips:

* V=V0
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SURFACE POTENTIAL CALCULATIONS:

Taking the width of the strips— 0 we get an analytic solution:

Surface potential in GEM hole
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ELECTRON TRANSPORT ALGORITHM:

For each free time electrons are traced on a vacuum trajectory,
according to the local E-field of the initial position of the particle:

E(#%) = E(#,) = Constant

This local field approximation in addition to the null-collision technique
determines collision rate.
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ELECTRON TRANSPORT ALGORITHM:

Effective gain for a single GEM detector

The Runge-Kutta-Nystrom method i e
. 107 ¢ alculation with constant field aprox.
was used to Improve the accu raCy X 8a:cu:a:ccion mm Rungte-}iljtt:Nsstrém method =
of the transport algorithm. =
5 102
This will allow to accurately 8

Edrift =2 kV/cm,
Einduction = 3 kv/em
Ar-CO, (70-30)

rp = 0.56

simulate low pressure gas gain
detectors (P << 1 atm).
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SECUNDARY ELECTRON EMISSION:

Energy distribution of impact electrons

In the simulations the effect of secondary 71—
electron emissions from the polyimide g Mesn 736 1
surface has been ignored. 30[- onertonw 0
= | Overflow 7 | A

The minimum energy required to release [ _
charges from impact is ~ 29 eV. I ]
- Neglectable effect! i ]
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EFFECTS OF HOLE GEOMETRY:

Asymmetries in the geometry of a GEM can occur due to the etching
processes.




EFFECTS OF HOLE GEOMETRY:

CMS Preliminary

Two main production
techniques are used.

- Double mask
- Single mask

The gas gain is
dependent on the

orientation of the GEM.
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EFFECTS OF HOLE GEOMETRY:

Different types of hole geometries have been studied:
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EFFECTS OF HOLE GEOMETRY:
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EFFECTS OF HOLE GEOMETRY:

Gas gain
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EFFECTS OF HOLE GEOMETRY:
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CONCLUSION:

During the project the following possibilities have been explored:

Surface potential calculations
Electron transport algorithm
Secondary electron emission
Asymmetries in GEM hole geometry

—> No solution to the discrepancy has been found!
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