# Studies on Diamond-like Carbon Coated GEMs and Ceramic GEMs

#### **RD51** Collaboration Meeting CERN

Amir Alfarra Serhat Atay Ivor Fleck Jan Hahn

Department of Physics University of Siegen

22 October 2019





SPONSORED BY THE ederal Ministry of Education and Research



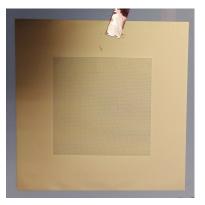
# Outline





- Test Chamber and Measurement Parameters
- Measurements and Characterization
- Results
- Summary of Ceramic GEMs

#### 2 Diamond-like Carbon Coated GEMs


- Coating Procedure
- FIB Analysis
- Gain of DLC GEMs
- Summary of DLC GEMs



## Ceramic GEMs

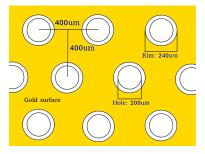


- Motivation for the use of ceramic: Higher tolerance for discharges.
- Produced by a Japanese Company named "KOA Corporation"
- Holes made by tipping

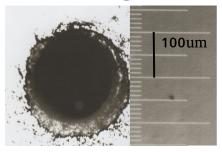


#### Ceramic GEM

#### • Two batches of GEMs


- First batch: Without rim around the holes. Caused discharges at low voltages
- Second batch: Rim included. Decreased probability of discharges. Only the second batch of GEMs are characterized.




#### Ceramic GEMs



A Time Projection Chamber for a Future Linear Collider



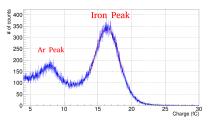
Sketch of a ceramic GEM



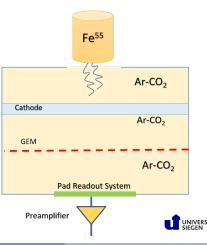
A picture of a hole in a ceramic GEM

| Properties     | ceramic                     | CERN                 |                       |
|----------------|-----------------------------|----------------------|-----------------------|
| Size           | 50 <i>mm</i> × 50 <i>mm</i> | 50mm 	imes 50mm      | -                     |
| Thickness      | $120 \mu m$                 | 50 $\mu m$           |                       |
| Conductor      | Silver, Nickel and Gold     | Copper               |                       |
| Insulator      | Ceramic                     | Kapton               |                       |
| Holes diameter | $200 \mu m \ (straight)$    | $50-70\mu m$ (conic) |                       |
| Pitch          | $400 \mu m$                 | $140 \mu m$          |                       |
| Ceramic body   | Glass-Alumina composite     | n/a                  | UNIVERSITÄT<br>SIEGEN |

Serhat Atay (Uni Siegen)

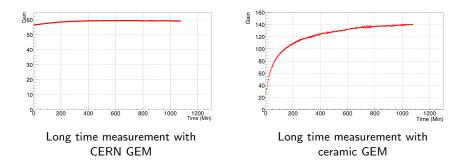

Studies on DLC and Ceramic GEMs

# Test Chamber in Siegen




- Small chamber (120 mm × 184 mm)to measure the gain of GEMs.
- Gas mixture: Ar CO<sub>2</sub> (80% 20%) mixture.
- 5.9 keV X-ray source (<sup>55</sup>Fe) for primary ionization.
- Drift field: 0.5 kV/cm, induction field: 2kV/cm.
- Pressure: Air pressure
- Temperature: Room temperature

• Multi Channel Analyzer (MCA) Spectra



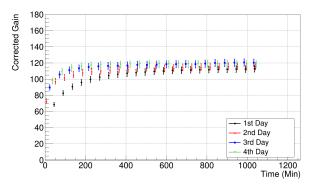

Signal with 2 peaks (Argon escape peak and  ${}^{55}Fe$  peak).



# Long Time Stability






• The first important result of ceramic GEM: Charge up effect.

- CERN GEM gain starts already from 95% of maximum gain
- Gain stabilization of a ceramic GEM takes hours.



# Repeatability





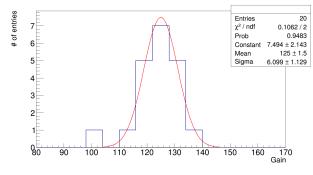
Long time measurements after T/P correction at 1 atm and 300 K.

| Time required for | 1st Day | 2nd Day | 3rd Day | 4th Day | 3 Days Later |
|-------------------|---------|---------|---------|---------|--------------|
| 90% of max gain   | 258 min | 132 min | 93 min  | 69 min  | 189 min      |
| 95% of max gain   | 414 min | 276 min | 192 min | 117 min | 297 min      |

- Second important result: Conditioning
  - Increase of gain stabilization with consecutive measurements

Serhat Atay (Uni Siegen)

Studies on DLC and Ceramic GEMs


UNIVERSITÄT

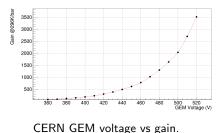
7 / 22

# Repeatability

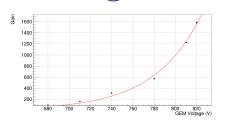


A Time Projection Chamber for a Future Linear Collider




Distribution of gains from different measurements taken for 4 months of period

 Mean of the distribution of the corrected gains (at 1 atm and 300 K) from different measurements: 125


• Relative width: 
$$\sigma/\mu=$$
 4.9%



## Achievable Maximum Gain



1 atm and 300 K



Ceramic GEM voltage vs. gain  ${\sim}1$  atm and  ${\sim}300~\text{K}$ 

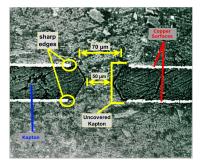
- Achievable maximum voltage without discharges
  - for CERN GEM: 520 V
  - for ceramic GEM: 820 V
- Gain at achievable maximum voltage without discharges
  - ▶ for CERN GEM: ~3500
  - ▶ for ceramic GEM: ~1600



A Time Projection Chamber

for a Future Linear Co




- CERN GEM and ceramic GEM measurements have been performed.
- Repeatability check of ceramic GEMs
  - $\blacktriangleright\ < 5\%$  deviation between different measurements within  $1\sigma$
- Charging up effect observed.
- Conditioning observed.
- Lower maximum safe gain.
- Ceramic GEM studies have been terminated.



Diamond-like Carbon (DLC) Coated GEM • Corpo

#### Motivation

- Reduce of discharge probability by coating sharp edges and kapton inside the holes
- Establishment of well defined electric field within the hole
- Increase of maximum safe gain voltage (and gain)
- Four batches of coating with different thicknesses and speeds
  - ▶ 50 nm fast, 50 nm, 100 nm, 300 nm

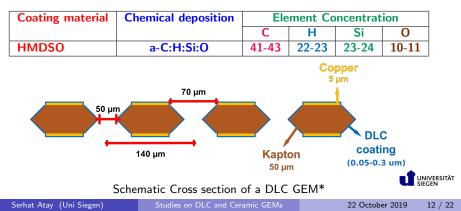


GEMC. SpeedThickness (nm)SICON50ffast50SICON50normal50SICON100normal100SICON300normal300

The list of DLC coated GEMs. There are four coated GEMs for each type of coating.

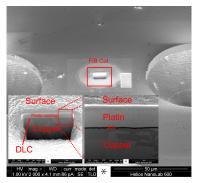


A Time Projection Chamber

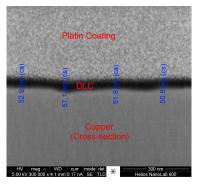

for a Future Linear Co.

Cross section of a GEM

# **DLC Coating Procedure**




- Coatings done by Fraunhofer-Institut für Schicht- und Oberflächentechnik using Plasma assisted Chemical Vapor Deposition (PACVD) procedure.
  - Hexamethyldisiloxane (HMDSO) for a-C:H:Si:O (SICON) coating
  - High electric field to break HMDSO into fragments to grow diamond-like bonding
- Thickness control by deposition time




# Thickness Measurements (on the Surface)

- FIB (Focused Ion Beam) analysis by Micro- and Nanoanalytics at Uni Siegen (Prof. Dr. Butz)
  - Coating of platin-organic compounds to increase contrast
  - Confirmed the thickness on surface of the GEM: ~50nm

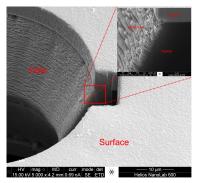


# FIB image from surface of the GEM.

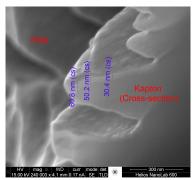


# FIB image with thickness measurement.




A Time Projection Chamber for a Future Linear Collider

# Thickness Measurements (in the Holes)



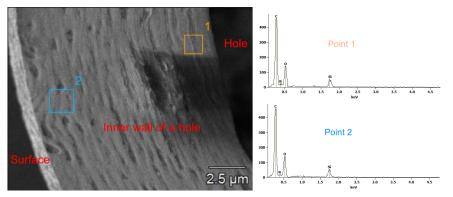

A Time Projection Chamber for a Future Linear Collider

- The coating thickness measurement not possible due to non-homogeneity of the inner wall of the hole
- Rough surface inside the hole due to etching of the holes
- Confirmed the existence of the DLC on the wall of the hole by EDX



FIB image from a hole of the GEM.




FIB image inside the GEM hole with a presumable coating.

# Thickness Measurements (in the Holes)

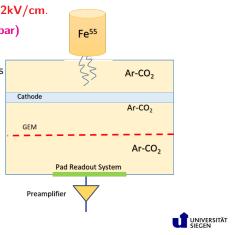


A Time Projection Chamber for a Future Linear Collider

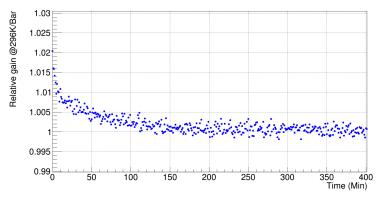
- The coating thickness measurement not possible due to non-homogeneity of the inner wall of the hole
- Rough surface inside the hole due to etching of the holes
- Confirmed the existence of the DLC on the wall of the hole by EDX



#### SEM image with EDX analysis




## Test Chamber in Siegen




- Small chamber (120 mm × 184 mm)to measure the gain of GEMs.
- Gas mixture: Ar CO<sub>2</sub> (80% 20%) mixture.
- 5.9 keV X-ray source (<sup>55</sup>Fe) for primary ionization.
- Drift field: 0.5 kV/cm, induction field: 2kV/cm.
- Pressure: 1 atm (1013.25 mbar ±1 mbar)
- Temperature:  $\sim$  300K  $\pm 1 \text{K}$
- Corrected gain for small T/P deviations

A scheme of the arrangement of the GEM inside the test chamber.

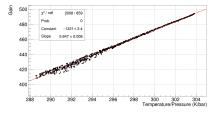


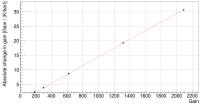
# Charge up effect



Gain vs. time

- MCA spectra with 1 minute-intervals
- 2% overshooting of gain after 10V  $V_{\textit{GEM}}$  increase
- Cut of first 150 minutes to get rid of charge up effects





A Time Projection Chamber

Serhat Atay (Uni Siegen)

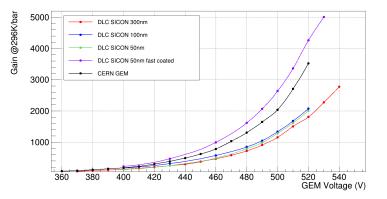
# Temperature/Pressure Correction







GEM gain vs. T/P at constant voltage


Absolute change in gain per 1 K/bar vs gain

| GEM      | Coating speed | Thickness<br>nm | Change in gain<br>% / (K/bar) |
|----------|---------------|-----------------|-------------------------------|
| CERN     | -             | 0               | 1.39                          |
| SICON50f | fast          | 50              | 1.49                          |
| SICON50  | normal        | 50              | 1.19                          |
| SICON100 | normal        | 100             | 0.87                          |
| SICON300 | normal        | 300             | 0.78                          |

- Aim to get same conditions to compare the measurements.
- A simple T/P correction coefficient for each type of GEM independent on other UNIVERSITÄT parameters around 1 atm and 300 K

Serhat Atay (Uni Siegen)

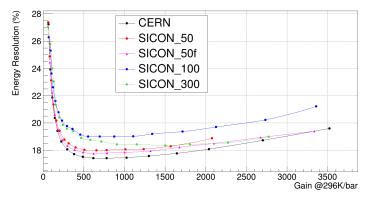
#### Comparison of Gains



Gain vs. GEM Voltage for SICON GEMs.

- Each point: Gaussian mean of the distribution of at least 90 MCA spectra.
- With DLC coating, lower gain than in CERN GEM is achieved at same voltage, except 50nm fast coated DLC GEMs.

Serhat Atay (Uni Siegen)


Studies on DLC and Ceramic GEMs

A Time Projection Chamber

for a Future Linear Co

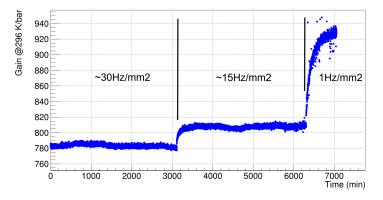
# **Energy Resolution**





Energy Resolution vs. gain for 50nm fast coated SICON GEMs.

- Each point: Gaussian mean of the distribution of at least 90 MCA spectra
- Similar energy resolutions with respect to CERN GEMs




Serhat Atay (Uni Siegen)

Studies on DLC and Ceramic GEMs

## Rate Dependency of Gain





Gain vs. time with different rates for 50nm fast coated SICON GEMs.

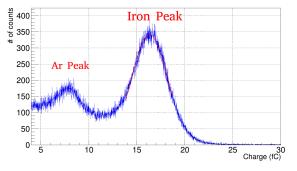
- SICON GEM gain depends on the rate.
- The higher the rate, the lower the gain.
- Q:Typical behoviour of GEMs at lower rates??



# Summary of DLC GEMs



- CERN GEMs have been DLC coated by PACVD method with 3 different thicknesses and 2 different coating speeds (50nm fast coated, 50nm, 100nm, 300nm).
- $\bullet\,$  FIB analysis predicts the thickness for 50nm fast coated DLC GEMs as  ${\sim}50nm$  on the surface
- Existence of the DLC coating is confirmed the inner wall of the holes by EDX analysis
- Gains are corrected for environmental parameters (pressure and temperature)
- With DLC coating, lower gain than in CERN GEM is achieved at same voltage, except 50nm fast coated DLC GEMs.
- The thicker the coating, the lower the gain at same voltage.
- SICON GEM gain depends on rate at lower values. (under investigation)




# Backup



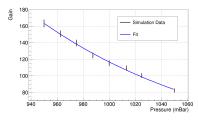
# Gain Calculation





Signal with 2 peaks (Argon escape peak and  ${}^{55}Fe$  peak).

• Number of primary electrons:


 $n_p = \frac{5900 \ eV}{25 \ eV} \times 0.80 + \frac{5900 \ eV}{34 \ eV} \times 0.20 = 223$ 

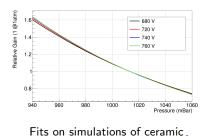
▶ 25eV and 34eV: Average energy per ionization for Ar and  $CO_2$  respectively.

• Thus, the gain: ratio of total  $(n_t)$  to primary  $(n_p)$  electron number  $G = n_t \times \frac{1}{n_p} = \frac{Q_t}{e} \times \frac{1}{223}$ 

## Pressure Adjustment

- Assumption for gain adjustment:
  - $G = e^{\alpha x}$  is valid
  - $\alpha = Ape^{-Bp/E} \propto p$  is valid
- Pressure adjustment fit function: G = e<sup>sp+c</sup>
  - ► s: slope
  - c: constant




Fit on simulations of ceramic GEM at 740 V  $\,$ 



• Gain adjustment (at 1 atm):

 $G_{corr} = \frac{G_{meas}(p)}{e^{sp+c}}$ 

| $V_{GEM}$ (V) | slope ( $Bar^{-1}$ ) | constant  |
|---------------|----------------------|-----------|
| 680           | -6.44±4.5%           | 6.53±4.5% |
| 720           | -6.59±4.4%           | 6.68±4.4% |
| 740           | -6.72±4.5%           | 6.81±4.5% |
| 760           | -6.69±4.8%           | 6.78±4.8% |

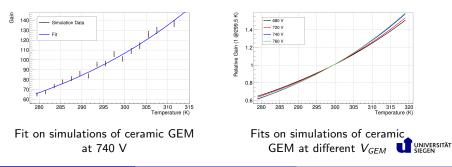


GEM at different  $V_{GEM}$  U

Serhat Atay (Uni Siegen)

UNIVERSITÄT SIEGEN

#### Temperature Adjustment


- Adjustment function by fitting simulation data
- Temperature adjustment fit function:  $G = e^{sT+c}$ 
  - ► s: slope
  - c: constant



• Gain adjustment (at 299.5 K):

 $G_{corr} = \frac{G_{meas}(T)}{e^{sT+c}}$ 

| $V_{GEM}$ (V) | slope ( $10^2 K^{-1}$ ) | constant   |
|---------------|-------------------------|------------|
| 680           | 2.11±2.2%               | -6.32±2.2% |
| 720           | 2.2±2.1%                | -6.59±2.1% |
| 740           | 2.35±3%                 | -7.03±3%   |
| 760           | 2.39±5.4%               | -7.15±5.4% |



Serhat Atay (Uni Siegen)

## Gas System in Siegen



A Time Projection Chamber for a Future Linear Collider

- The gas system includes a gas mixing system with desired percentages and a small chamber to monitor gas stabilization inside the experimental chamber
- After mixing process, gas mixture flows through the test chamber and/or the TPC prototype
- Later, the gas mixture flows to another chamber where we can monitor gas stabilization before it is released to air.



