
Commissioning of a High-Pressure TPC with Hybrid Optical and Charge Readout

Harrison Ritchie-Yates on behalf of P-355 Royal Holloway, University of London 22 October 2019

Introduction

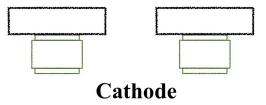
- A gaseous TPC designed to solve a problem in neutrino physics.
- Goals
 - Characterise final state interactions (FSI) of nucleons produced in *v*-nucleus interactions.
 - Make measurements of the proton-argon cross-section for low-momentum protons.
- Monte Carlo generators disagree on FSIs below 250 MeV/c.

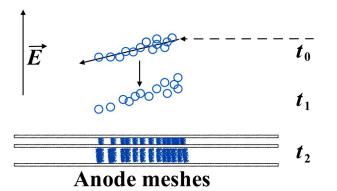
Introduction

- A gaseous TPC designed to solve a problem in neutrino physics.
- Goals
 - Characterise final state interactions (FSI) of nucleons produced in *v*-nucleus interactions.
 - Make measurements of the proton-argon cross-section for low-momentum protons.
- Monte Carlo generators disagree on FSIs below 250 MeV/c.

TPC Setup

- HPTPC is a High Pressure gaseous Time Projection Chamber (TPC) featuring hybrid charge and optical readout.
- Housed in a pressure vessel length 730 mm x 1400 mm diameter, rated to 5 bar absolute.
- Features steel mesh electrodes and a low-mass field cage.
- Designed to be operated in a proton beam or using radioactive sources.

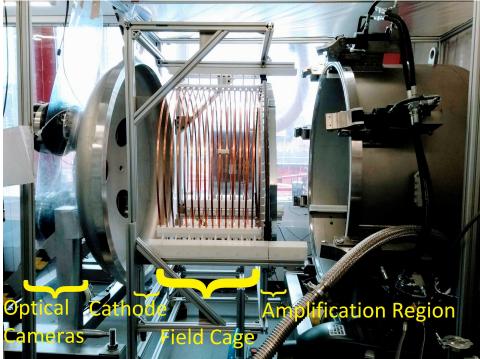




TPC Setup

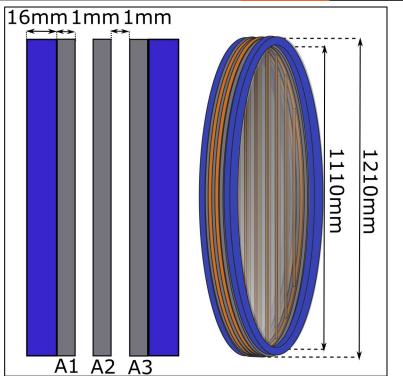
- Active volume consists of drift and amplification regions, defined by a field cage and steel mesh electrodes.
- A 447 mm drift region consists of a cathode mesh and 12 field cage rings of diameter 1110 mm. Edrift < 500 V/cm.
- The amplification region is constructed from 3 unsegmented anode meshes.
- 4 CCD cameras are mounted behind cathode for optical readout.

Cameras


ROYAI

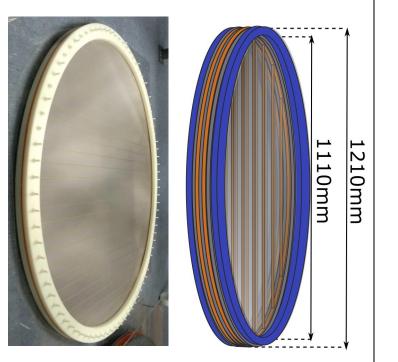
TPC Setup

ROYAL HOLLOWAY UNIVERSITY OF LONDON


- Low-mass field cage allows the TPC to be operated in a beamline.
- Pressure vessel and hydraulics system allows for operation up to 5 bar absolute pressure.
- Fine optical readout + broad charge readout provides tracking information at a low cost.

Amplification region

- 3 high tension steel anode meshes, tensioned to 19±1 N/cm using a Gruning G-STRETCH 210 stretching machine, and glued to 1 mm thickness steel rings.
- Anodes are 100 lpi mesh, 25 micron wire, with an optical transparency of 89%.
- Anodes separated by 1 mm polyester, and supported by 16 mm nylon rings.
- 3 channels for charge readout.

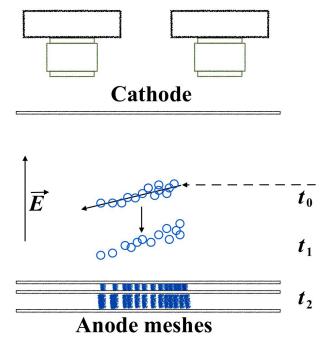


ROYAI

Amplification region

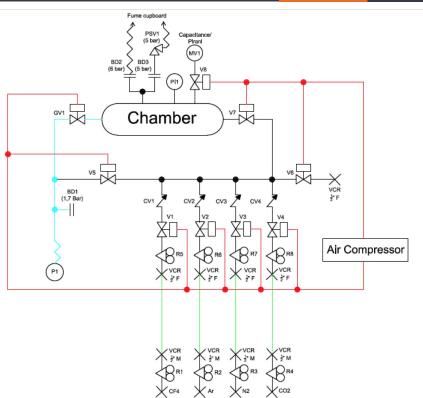
- 3 high tension steel anode meshes, tensioned to 19±1 N/cm using a Gruning G-STRETCH 210 stretching machine, and glued to 1 mm thickness steel rings.
- Anodes are 100 lpi mesh, 25 micron wire, with an optical transparency of 89%.
- Anodes separated by 1 mm polyester, and supported by 16 mm nylon rings.

• 3 channels for charge readout.


ROYAL HOLLOWAY UNIVERSITY

Optical Readout

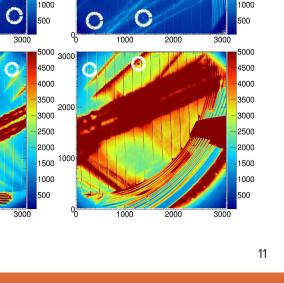
- Optical Readout is provided by four FLI Proline PL09000s with 3056 x 3056 pixels, of size 12 x 12 μm, focused on the amplification region, vixel size of 230μm.
- Ionisation electrons from charged particles propagating through the TPC move in the drift field to the amplification region where avalanche charge multiplication and scintillation photon production occurs.
- Optical readout provides tracking information in the amplification plane.



Cameras

Gas System

- Vessel is evacuated to ~ 1 x 10⁻⁶ barA before filling using a Agilent Triscroll 800 dry pump.
- Operated at a range of pressures from atmospheric pressure up to 5 bar absolute, and a range of gas mixtures of Ar, Ar-CO2, and Ar-CO2-N2, typically with 95-99% Argon.
- Gas system allows for mixing of gases from 4 different inputs.



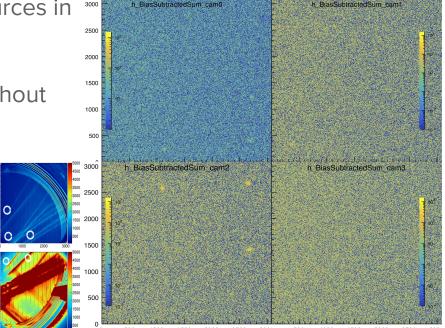
Optical Readout

• Image: Simultaneously recorded frames during a spark event.

- Each camera images a 71 x 71 cm^2 quadrant of the amplification region.
- The locations of 5 Am241 sources inside the vessel are indicated by white rings.

1500 1000

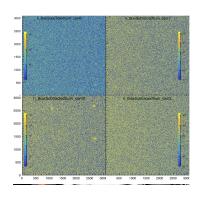
ROYAL HOLLOWAY UNIVERSITY OF LONDON

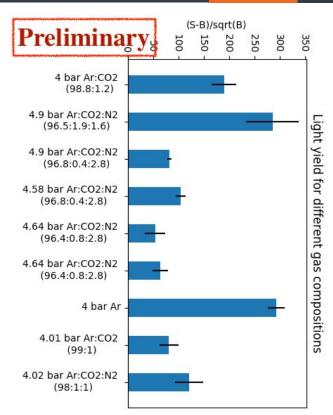

12

Optical Readout

- Image: Light yield from Am241 sources in pure argon at 3 barA pressure.
- Sources are visible in raw data without pedestal subtraction.

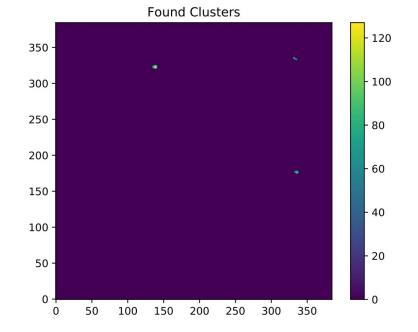
C


• Relative light yield compared for different gas mixes.



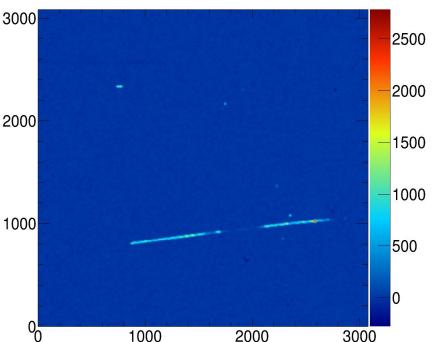
Optical Readout

- Image: Light yield from Am241 sources in pure argon at 3 barA pressure.
- Sources are visible in raw data without pedestal subtraction.
- Relative light yield compared for different gas mixes.



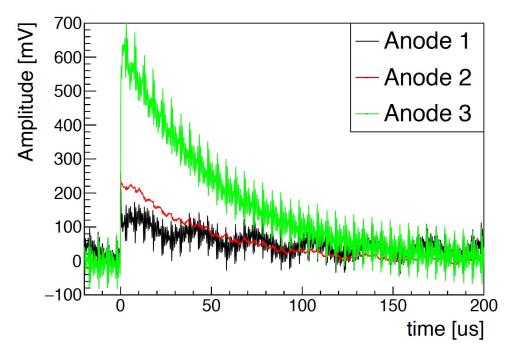
Clustering & Small Tracks

- Algorithm designed to find clusters in the optical readout.
- This has been optimised using the known source positions.
- This algorithm will be used to reconstruct tracks in the amplification region for data taken in the T10 beamline.



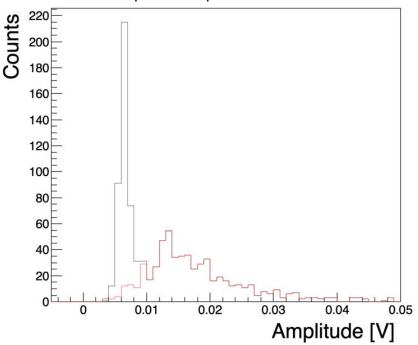
15

Tracking


- Algorithm designed to find clusters in 3000 the optical readout.
- This has been optimised using the known source positions.
- This algorithm will be used to reconstruct tracks in the amplification region for data taken in the T10 beamline.

Charge Readout

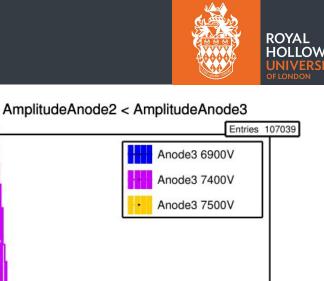
- Charge readout is decoupled from the bias-lines of the three unsegmented anode meshes using a 10 nF capacitor.
- These signals are then fed into CREMAT CR-112 preamp circuits and then digitised.

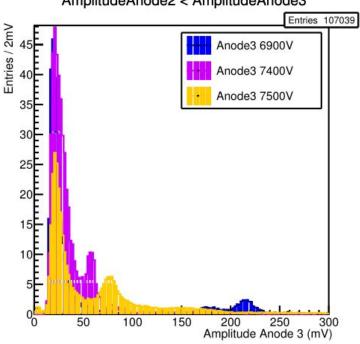


• Cuts are made to remove waveforms from sparks.

Charge Readout

- Image: charge waveform amplitude spectrum for data taken with a gas mix of 970 mbarA Argon, 370 mbarA CO2.
- With an Fe55 source, we see a single peak in this spectrum, corresponding to the 6 keV X-Ray emission from Fe55.
- No escape peak is visible due to low energy resolution.


Amplitude Spectrum Anode 3



Gain Calibration

- Image: charge waveform amplitude spectra for data taken at 4800 mbarA Argon, 100 mbarA CO2.
- We expect to see the position of this peak increase with higher voltage settings.
- Peak moves with voltage. We do see gain increasing with voltage, but we also observe runs in which the peak does not follow the general trend.

Further Work

ROYAL HOLLOWAY UNIVERSITY OF LONDON

- An ALICE OROC is to be tested in the HPTPC pressure vessel.
- DUNE are planning to use these OROCs in an HPTPC as part of their near detector.
- This will replace the current amplification region with a segmented anode.
- Currently being tested in a test box with radioactive sources.

Summary

- HPTPC is a High Pressure gaseous Time Projection Chamber (TPC) featuring hybrid charge and optical readout provided by four FLI Proline PL09000 CCD Cameras with vixel size of 230 μm.
- It has been operated at a range of pressures up to 5 bar absolute, and with a range of gas mixes of Ar, Ar-CO2, and Ar-CO2-N2, typically with 95-99% Argon.
- It's main aim is to characterise final state interactions (FSI) of nucleons produced in *v*-nucleus interactions by making measurements of low-energy proton-argon interactions.
- It also serves as a platform to test TPC technology at high pressure.

Commissioning of a High-Pressure TPC with Hybrid Optical and Charge Readout

Harrison Ritchie-Yates on behalf of P-355 Royal Holloway, University of London 22 October 2019

