CADENCE simulation of Micromegas NSW LM1 resistive layer

Layout:

- The ATLAS - NSW upgrade
- MM for the ATLAS - NSW upgrade
- The resistive layer (brief) description
- Previous calculations
- Some of our (preliminary) results
- Conclusion

Nancy Andari, Éric Delagne, Thanesh Thavarajah (*), Philippe Schune et al. (CEA Paris - Saclay, DRF - IRFU)
(*) student from Paris Est - Marne-la-vallée university.
Work done during his Master-2 internship in CEA Paris-Saclay

Resistive foils have been produced in Japan (production already done)

Details of PCB structure

Strips length from ~ 50 to $\sim 200 \mathrm{~cm}$ Width ~320 microns
Pitch 450 microns

$ص$ Irfu

Resistive strips are on top of each copper strips

Strips connexion each 10 mm
One shifted w.r.t. the next.

Readout Board Production

I. photolithographic creation of copper pattern standard process.
complex due to: size of board, required precision \& board elongation (humidity).
II. cutting of Kapton foil with resistive pattern non-standard but simple \& required accuracy only $\pm 1 \mathrm{~mm}$
III. stacking and high-pressure \& temperature gluing of Kapton foil, glue foil and board standard process for small boards complex due to: size of board \& required cleanliness.
IV. chemical silver plating of copper pads standard process
V. screen-printing of silver paste non-standard but rather simple \& required accuracy only $\pm 1 \mathrm{~mm}$
VI. lamination of coverlay \& pillar creation standard process for small boards.
complex due to: size of boards, highly non-standard pattern, required flatness
VII.cutting of boards and drilling of non-precision holes standard process on CNC machine. complex due to size of boards, required cutting precision \& board elongation (humidity).

Resistive area:

Resistive strips are made with some resistive paste, deposited on top of a Kapton foil.

It is glued on top of the RO PCB (having the RO strips)
R foils have been made in Japan (KOBE et al. and industry)

For our simulation we assume:
$R=1 \mathrm{M}-\mathrm{Ohm} / \mathrm{mm}$
If some variations, one may interprete results in \% of a reference value...

Some historical remarks on previous / these calculations

2012: First calculation made in Frascati-INFN, B.Ponzio and S.Franchino If distance "d" of minimum approach of first resistive interconnexion between resistive strips is too close to the HV silver line, then, close to the edge, the equivalent strip resistance decreases.
=> passivation in industry (ELVIA and ELTOS) by ~10 mm

Beg. of 2019: E.Delagne (CEA Paris - Saclay)
CADENCE simulation using an "elementary cell" based on a two (short-) strips layout having some strips-connexion, and varying injection points / test points along the strip.
Hyp.: R linear with strip length, as $1 \mathrm{M}-\mathrm{Ohm} / \mathrm{mm}$.
=> "arcade" shape of 10 mm due to resistive connexion pitch

Mid. 2019: $2^{\text {nd }}$ iteration in CEA (Th.Thavarajah, Ph.Schune et al.)

- Several cells to simulate trapezoidal shape
- Tests of different
- R-connexion between strips
- different strip length
- different layout of R-connexion (i.e. different "d")

Remind: changing paste resistivity, is "equivalent" to re-scaled calculation.

$ص$ Irfu

Several configuration, depending of the MM - NSW chamber type, side, etc.

Pillars and side protection ("wall") are made by Pyralux on top of the resistive layer.
2×64 microns.

In this simulation we assume that the start of the resistive connexion between strips, starts just after the industry passivation.

Pillars and side protection ("wall") are made by Pyralux on top of the resistive layer.
2×64 microns.

Our Trapezoid shape induces regular pattern of 78 strips (except at the borders)

Industry passivation $\mathrm{RP}=10 \mathrm{M} \Omega=10 \mathrm{~mm}$

$$
\mathrm{RP}=10 \mathrm{M} \Omega=10 \mathrm{~mm}
$$

Several (4) cells have been simulated + R_passivation in the industry in front of all strips
$\mathrm{R} 10=10 \mathrm{M} \Omega$

CADENCE simulation :

- Some test points where we inject a known current and where we measure V
- One can do this in each cell, one after the other

Some CADENCE results along a strip

Without connexions between strips : R-eq is simply $1 \mathrm{M}-\mathrm{Ohm} / \mathrm{mm}$, so linear with distance from strip origin

Impedance to ground : ground to first ladder distances
1 cm

Some CADENCE results along a strip

Without connexions between strips : R-eq is simply $1 \mathrm{M}-\mathrm{Ohm} / \mathrm{mm}$, so linear with distance from strip origin

Impedance to ground : ground to first ladder distances
1 cm

Measurements (on pre-serie NSW PCB)

Measurements done on a PCB (type \# 2) of LM1 type, from Module - 0 serie.
Industrial passivation was 3 mm only (ie an area with no signal)
Measurements error : ~+/- 10% (at least)

Measurement along a strip, PCB 13 mm

CB (type \# 2) of LM1 type, from Module - 0 serie. mm only.

Measurements error : ~+/- 10% (at least)
Measurement along a strip, PCB 13 mm

Different strips R-eq. calculated in CADENCE simulation

Different strips R-eq. calculate in CADENCE simulation

Trapezoidal shape of ETA pannel for $1010 \mathrm{~mm} * 421.2 \mathrm{~mm}$

- We developped a CADENCE program to calculate the R-equivalent of the ATLAS NSW Micromegas resistive layer (on top of the copper strips)
- We calculated some of the configurations corresponding to LM1 MM type (those built by CEA - Saclay)

Future:

We will calculate if some areas have some weakest R-eq value, due to the exact resistive layout

And compare to more measurements, on different types of NSW MM PCBs

$ص$ Irfu

spare

Cea SM2 PCB type

$ص$ Irfu

LM2 type eta-8 board : closest distance of resistive interconnexion to silver line is $\sim 15 \mathrm{~mm}$

