

Layout :

- The ATLAS NSW upgrade
- MM for the ATLAS NSW upgrade
- The resistive layer (brief) description
- Previous calculations
- Some of our (preliminary) results
- Conclusion

Nancy Andari, Éric Delagne, <u>Thanesh Thavarajah</u> (*), Philippe Schune *et al.* (CEA Paris – Saclay, DRF – IRFU)

(*) student from Paris Est – Marne-la-vallée university. Work done during his Master-2 internship in CEA Paris-Saclay

RD51 week, 21 - 23/10/2019 at CERN

Also thanks to Fabrice Guilloux (IRFU) for his expertise using CADENCE program

Structure of MM detectors

MICROMEGAS WEDGE SEGMENTATION

Resistive foils have been produced in Japan (production already done)

DE LA RECHERCHE À L'INDUSTRIE

Details of PCB structure

Strips length from ~50 to ~200 cm Width ~320 microns Pitch 450 microns

DE LA RECHERCHE À L'INDUSTRI

Detail

structure

Strips length from ~50 to ~200 cm Width ~320 microns Pitch 450 microns

Resistive strips are on top of each copper strips

Strips connexion each 10 mm One shifted w.r.t. the next. DE LA RECHERCHE À L'INDUSTRIE

Resistive layout

6

Readout Board Production

complex due to: size of board, required precision & board elongation (humidity).

- II. cutting of Kapton foil with resistive pattern non-standard but simple & required accuracy only ±1mm
- III. stacking and high-pressure & temperature gluing of Kapton foil, glue foil and board standard process for small boards complex due to: size of board & required cleanliness.
- IV. chemical silver plating of copper pads standard process
- V screen-printing of silver paste non-standard but rather simple & required accuracy only ± 1mm
- VI. lamination of coverlay & pillar creation standard process for small boards.

complex due to: size of boards, highly non-standard pattern, required flatness

VII.cutting of boards and drilling of non-precision holes standard process on CNC machine.

complex due to size of boards, required cutting precision & board elongation (humidity).

DE LA RECHERCHE À L'INDUSTRIE

Details of PCB structure

Some historical remarks on previous / these calculations

2012: First calculation made in Frascati-INFN, B.Ponzio and S.Franchino

If distance "*d*" of minimum approach of first resistive interconnexion between resistive strips is too close to the HV silver line, then, close to the edge, the equivalent strip resistance decreases.

=> passivation in industry (ELVIA and ELTOS) by ~10 mm

Beg. of 2019: E.Delagne (CEA Paris - Saclay)

CADENCE simulation using an "elementary cell" based on a two (short-) strips layout having some strips-connexion, and varying injection points / test points along the strip.

Hyp.: R linear with strip length, as 1 M-Ohm / mm.

=> <u>"arcade" shape of 10mm due to resistive connexion pitch</u>

Mid. 2019: 2nd iteration in CEA (Th.Thavarajah, Ph.Schune et al.)

- Several cells to simulate trapezoidal shape
- Tests of different
 - R-connexion between strips
 - different strip length
 - different layout of R-connexion (i.e. different "d")

Remind: changing paste resistivity, is "equivalent" to re-scaled calculation.

Several configuration, depending of the MM – NSW chamber type, side, etc.

Pillars and side protection ("wall") are made by Pyralux on top of the resistive layer. 2 x 64 microns.

In this simulation we assume that the start of the resistive connexion between strips, starts just after the **industry passivation**.

Pillars and side protection ("wall") are made by Pyralux on top of the resistive layer. 2 x 64 microns.

-f11

Several cells simulated

Single cell detail

CADENCE simulation :

- Some **test points** where we inject a known current and where we measure V
- One can do this in each cell, one after the other

Impedance to ground (Mohm)

Without connexions between strips : R-eq is simply 1 M-Ohm / mm, so linear with distance from strip origin

Impedance to ground : ground to first ladder distances 1cm

Distance from ground along the strip (cm)

Impedance to ground (Mohm)

Without connexions between strips : R-eq is simply 1 M-Ohm / mm, so linear with distance from strip origin

Impedance to ground : ground to first ladder distances 1cm

DE LA RECHERCHE À L'INDUSTRI

DE LA RECHERCHE À L'INDUSTRI

Measurements done on a PCB (type # 2) of LM1 type, from Module – 0 serie. Industrial passivation was 3 mm only (ie an area with no signal)

the production detectors

ents (on pre-serie NSW PCB)

🗩 Irfu

CB (type # 2) of LM1 type, from Module – 0 serie. mm only.

Different strips R-eq. calculated in CADENCE simulation

Distance from passivation along the strip(cm)

- We developped a CADENCE program to calculate the R-equivalent of the ATLAS NSW Micromegas resistive layer (on top of the copper strips)
- We calculated some of the configurations corresponding to LM1 MM type (those built by CEA - Saclay)

Future :

We will calculate if some areas have some weakest R-eq value, due to the exact resistive layout

And compare to more measurements, on different types of NSW MM PCBs

spare

DE LA RECHERCHE À L'INDUSTRIE

SM2 PCB type

LM2 type eta-8 board : closest distance of resistive interconnexion to silver line is ~15mm

