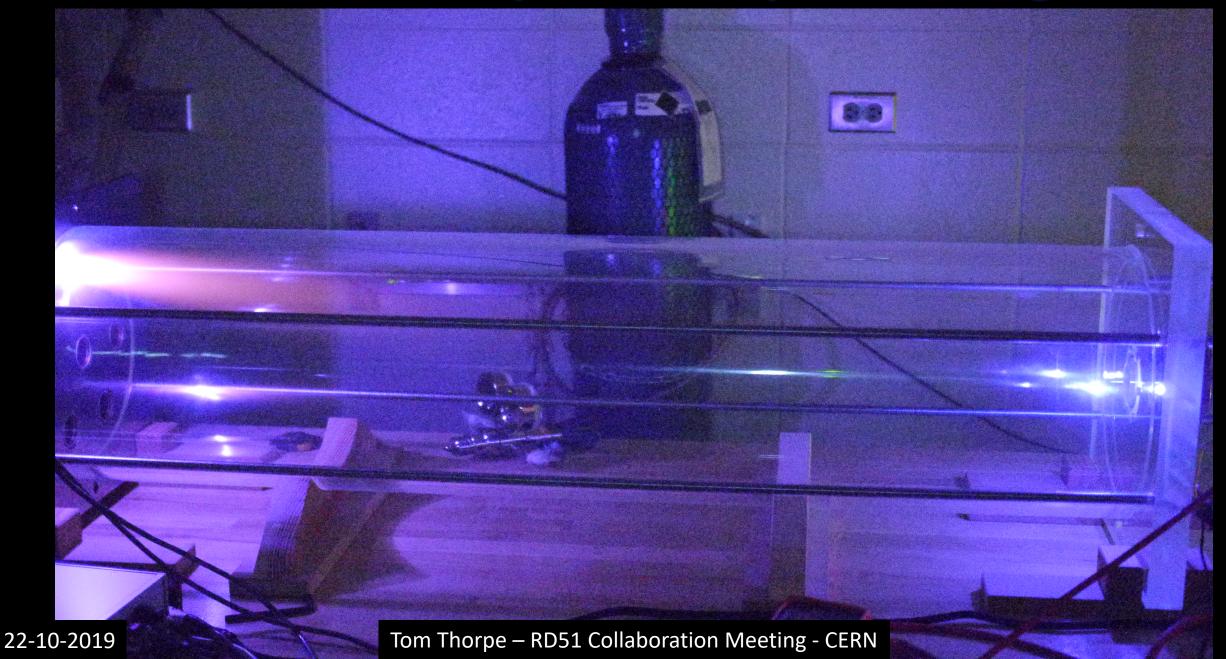
## A Gas Gain Study with Multiple GEM Stages



#### Outline

- Setups in Hawaii
- Gas gain with GEMs
- Townsend coefficient
- HeCO<sub>2</sub> gas gain
  - Thin GEMs
  - Thick GEMs (THGEMs)
- ArCO<sub>2</sub> gas gain
- SF<sub>6</sub> Negative Ion (NI) gas gain
- Conclusion



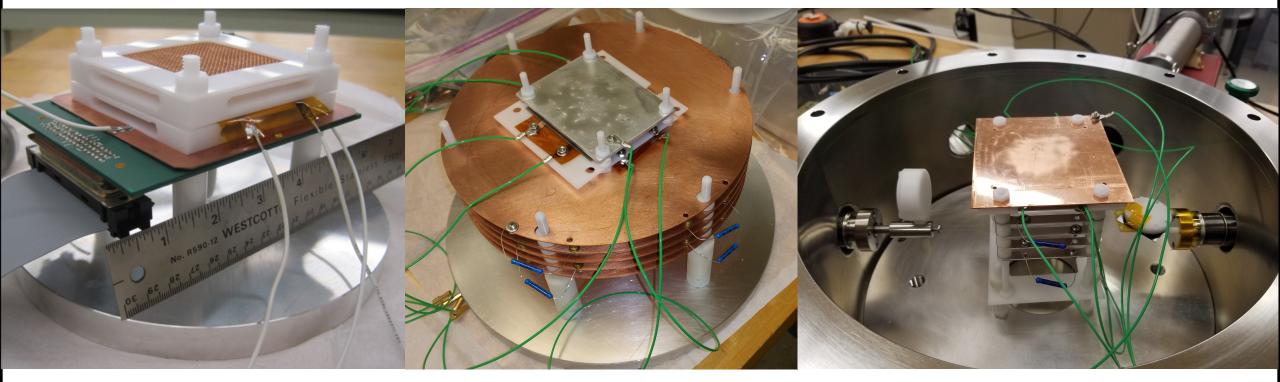


### D<sup>3</sup> Prototypes

Micro (2011 - 2013)

Milli - stage 1 (2014 – 2017)

Milli - stage 2 (2017 – 2018)

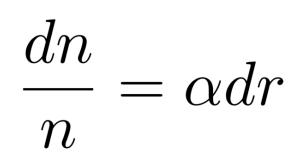


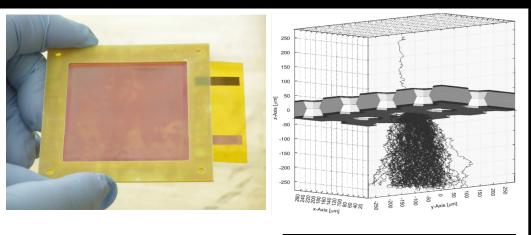
#### Details:

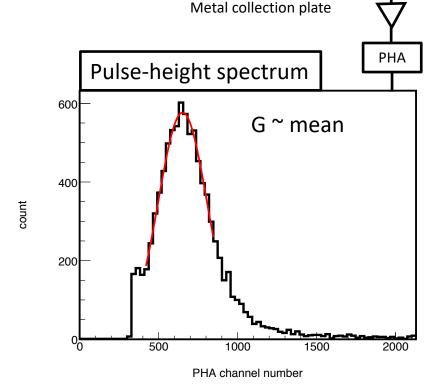
GAIN RESOLUTION STUDIES AND FIRST DARK MATTER SEARCH WITH NOVEL 3D NUCLEAR RECOIL DETECTORS, Ph.D. Thesis, Thomas N. Thorpe, Dec. 2018.

#### Townsend's Equation with GEMs

- $\alpha = 1^{st}$ Townsend coefficient
- n is number of electrons in avalanche
- r is path along the avalanche
- G = gain
- t = GEM thickness

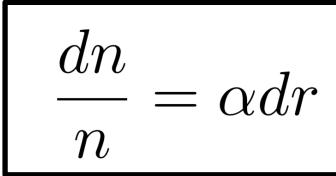


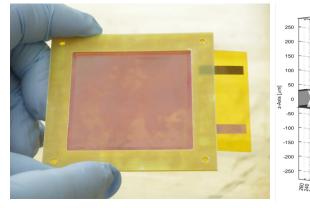


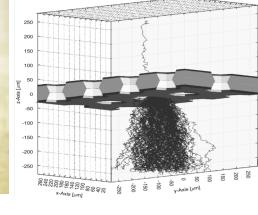


### Townsend's Equation with GEMs

- $\alpha = 1^{st}$ Townsend coefficient
- n is number of electrons in avalanche
- r is path along the avalanche
- G = gain
- t = GEM thickness

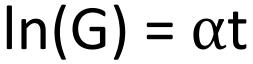


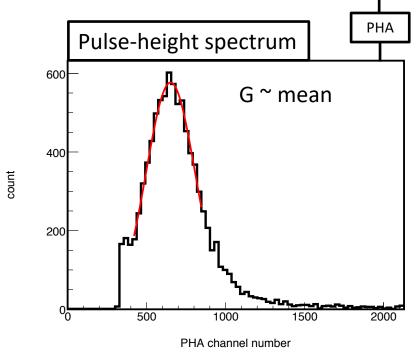




Metal collection plate

If the field is constant then:





$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

- General interpretation allows the interaction cross section to depend on fractional powers of the reduced field
- This manifests into the Townsend coefficient dependence
- Where  $0 \le m \le 1$
- We will consider two cases:
  - m = 1
  - m = 0

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

If 
$$m = 1$$
:  $\alpha \sim E$ 

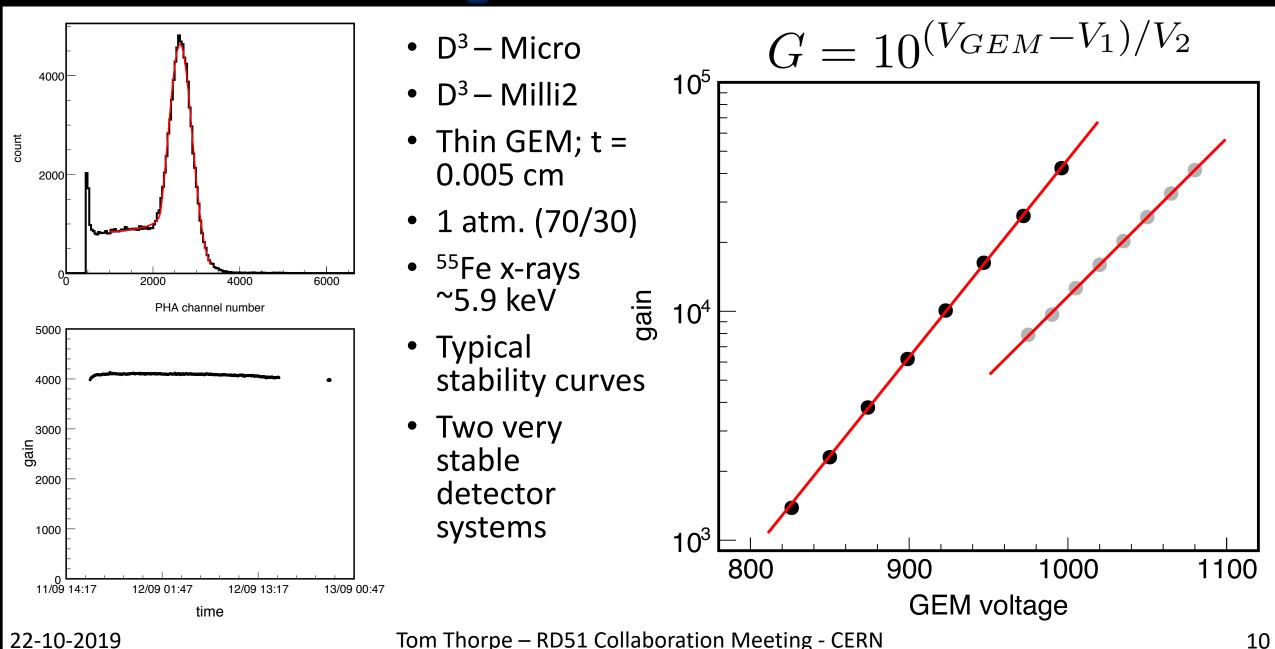
$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

If m = 1: Recall: 
$$\alpha \sim E$$
 In(G) =  $\alpha t$ 

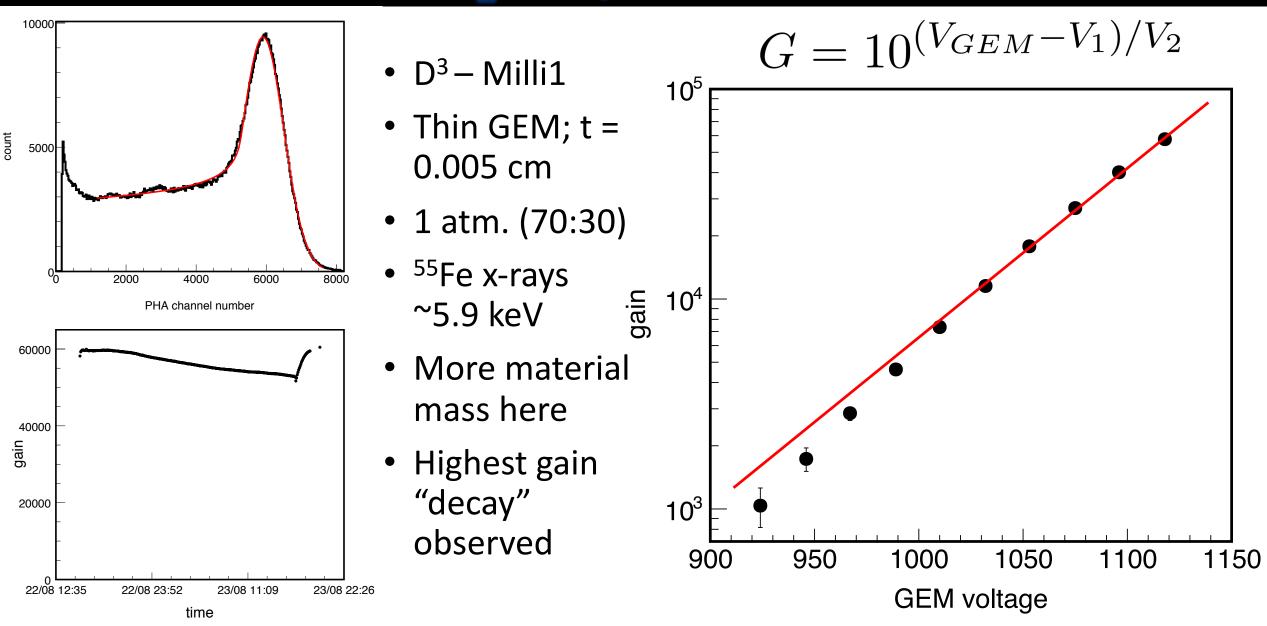
$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

If m = 1: Recall: 
$$\alpha \sim E$$
 In(G) =  $\alpha t$   $G = 10^{(V_{GEM} - V_1)/V_2}$  Operationally useful

## HeCO<sub>2</sub> – Double Thin GEMs

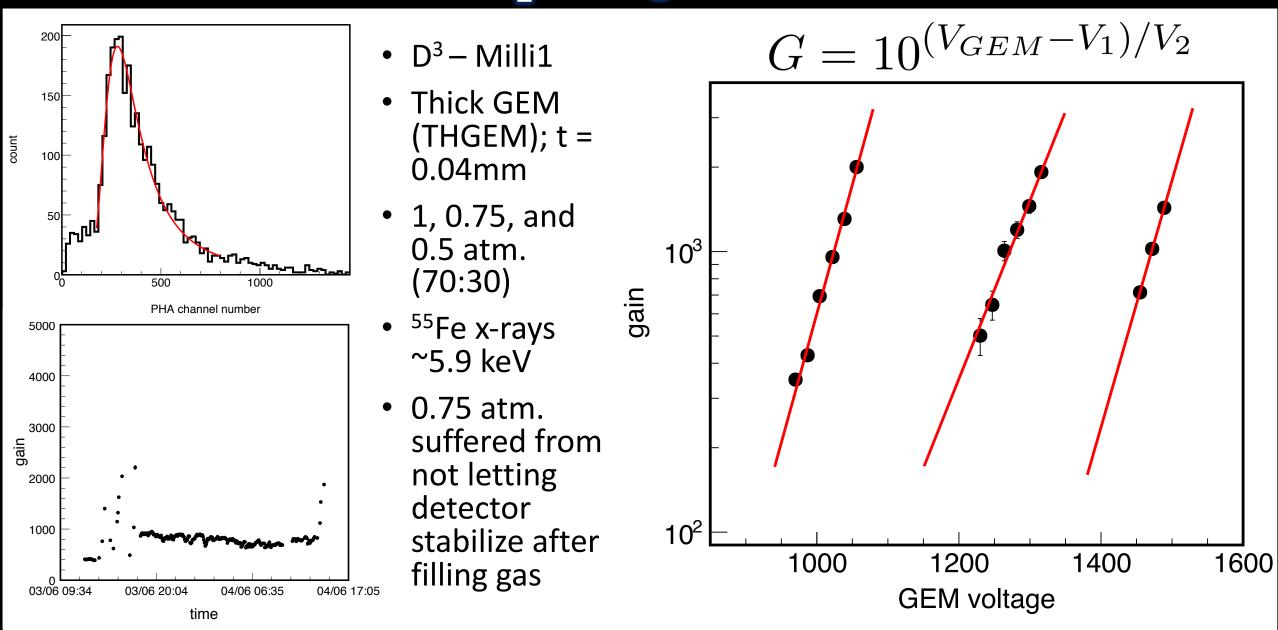


### HeCO<sub>2</sub> – Triple Thin GEMs

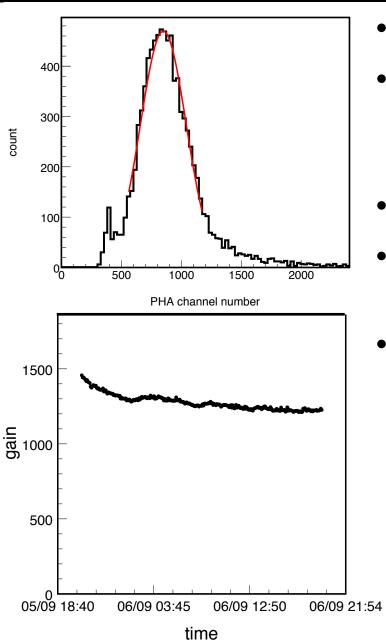


22-10-2019

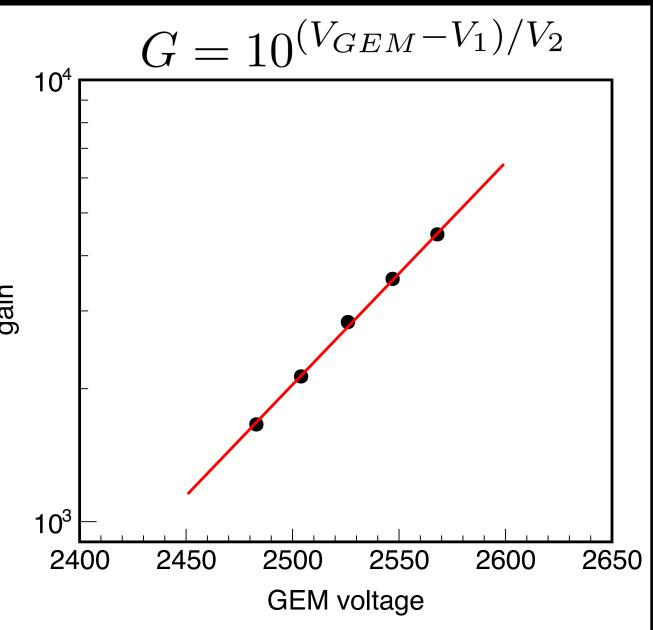
## HeCO<sub>2</sub> – Single THGEM



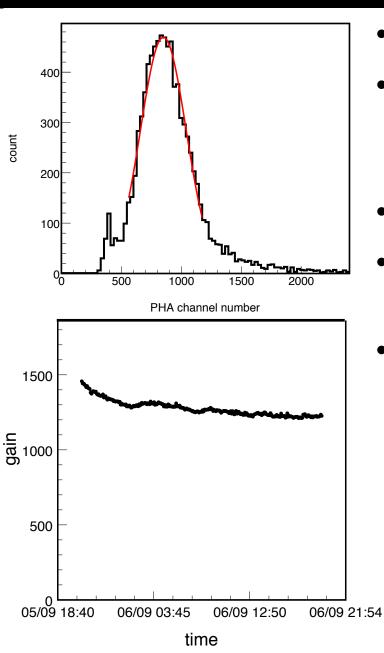
### HeCO<sub>2</sub> – Double THGEM



- D<sup>3</sup> Milli2
- Double THGEM; t = 0.04mm
- 1 atm. (70:30)
- <sup>55</sup>Fe x-rays
   ~5.9 keV
- More stable than a single THGEM

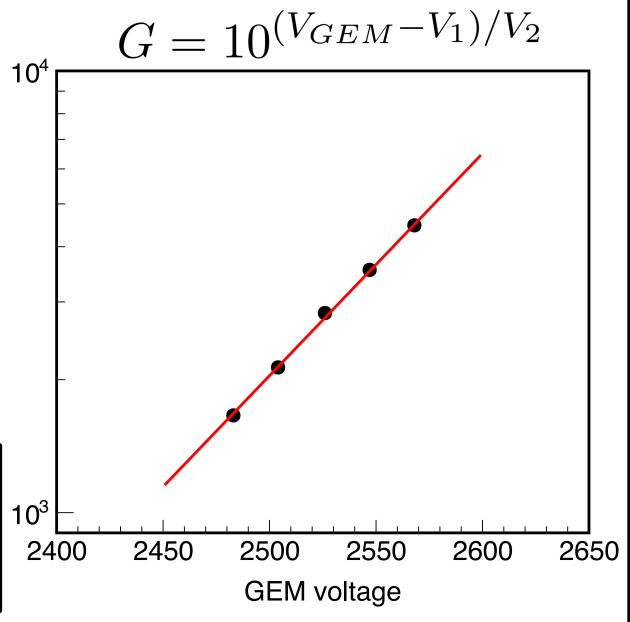


### HeCO<sub>2</sub> – Double THGEM



- D<sup>3</sup> Milli2
- Double THGEM; t = 0.04mm
- 1 atm. (70:30)
- <sup>55</sup>Fe x-rays
   ~5.9 keV
- More stable than a single THGEM

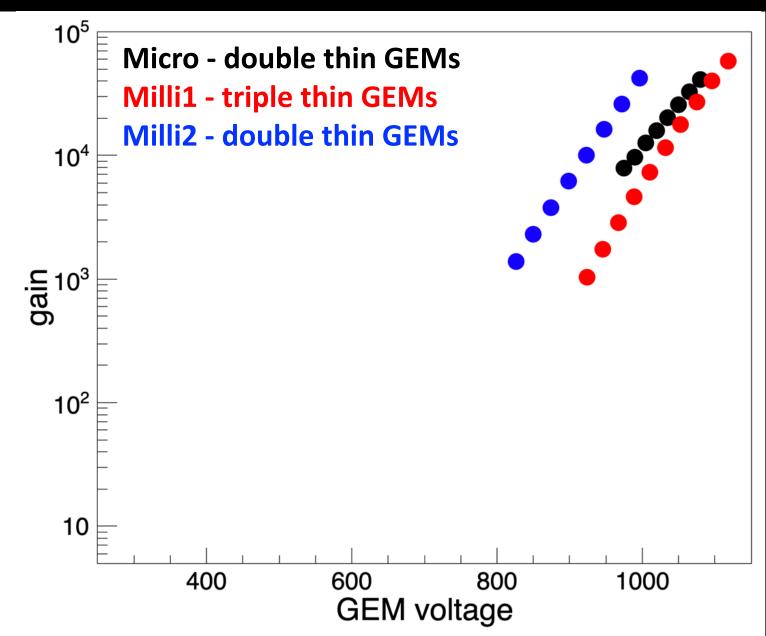
How do we put different data sets on the same plot?



#### Gain Per GEM - Before

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- \* quantities are per GEM
- So G\* is the gain per GEM

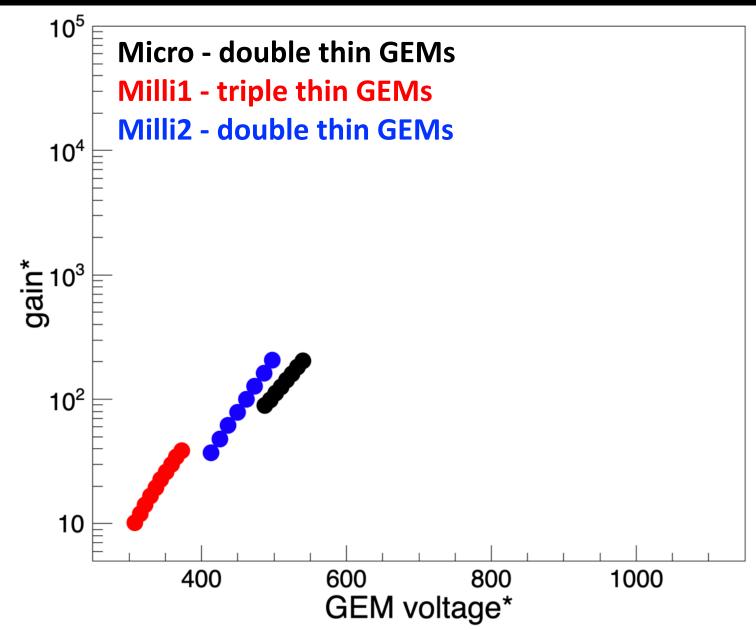
$$ln(G) = \alpha t$$



#### Gain Per GEM - After

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- \* quantities are per GEM
- So G\* is the gain per GEM

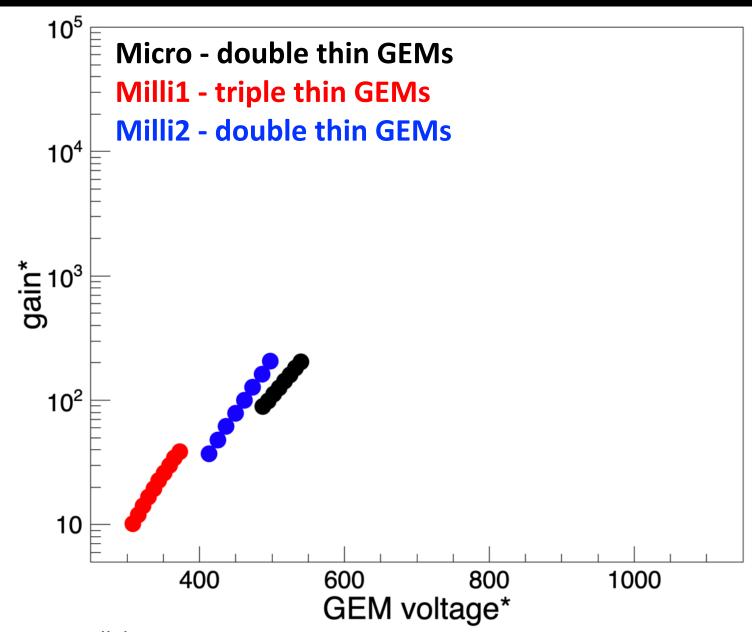
$$ln(G^*) = \alpha t$$



#### Gain Per GEM - After

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- \* quantities are per GEM
- So G\* is the gain per GEM

$$ln(G) = n\alpha t$$

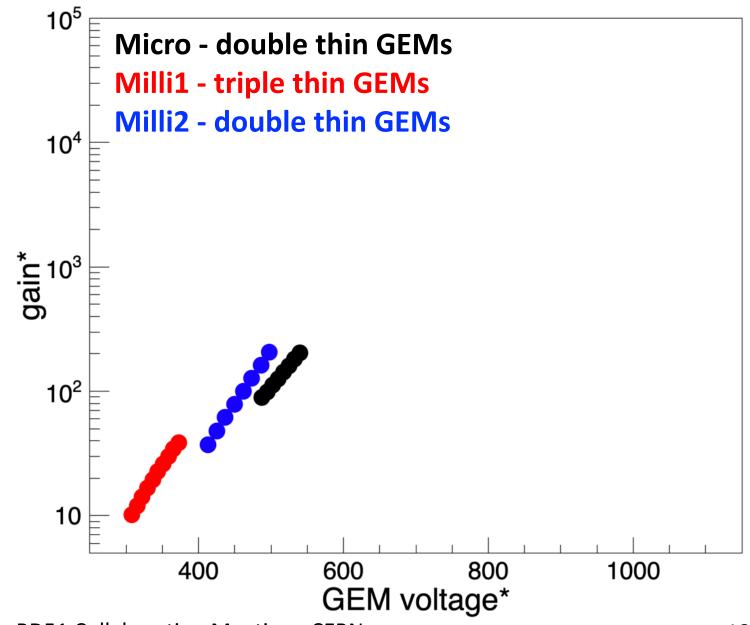


#### Gain Per GEM - After

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- \* quantities are per GEM
- So G\* is the gain per GEM

$$ln(G) = n\alpha t$$

Now what?



$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

So if 
$$ln(G) = n\alpha t$$
  
And  $m = 0$ 

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

p is the gas pressure

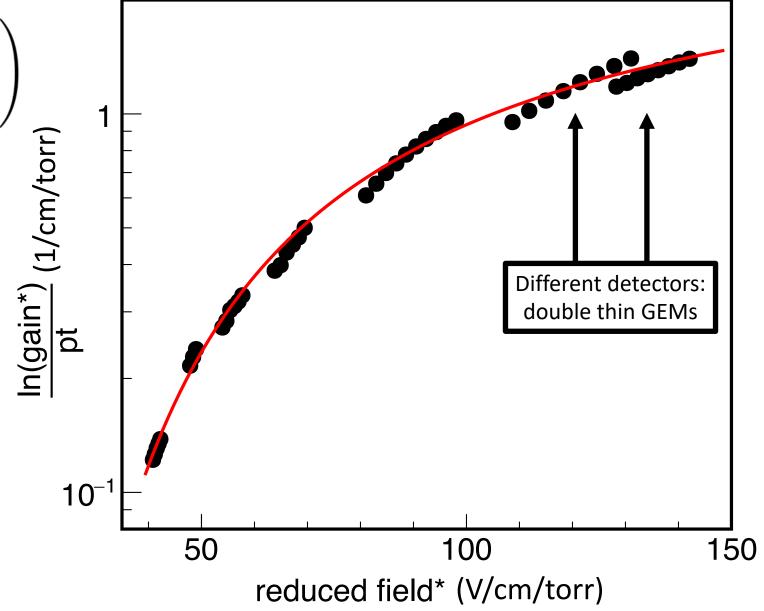
So if 
$$\ln(G) = n\alpha t$$
And  $m = 0$ 

$$\frac{\ln(G)}{npt} = A \exp\left(-B\frac{npt}{V_{GEM}}\right)$$

### Combining All HeCO<sub>2</sub> Data

$$\frac{\ln(G)}{npt} = A\exp\left(-B\frac{npt}{V_{GEM}}\right)$$

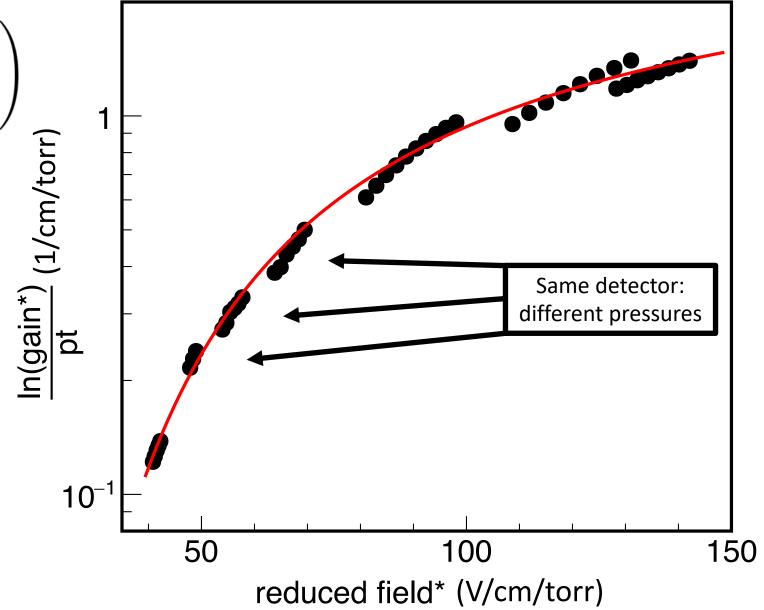
- Multiple detector setups over many years
- $\alpha$  ~ E would be a straight line on this plot
- Over large reduced field ranges the Townsend coefficient's dependence on the field is not linear
- At high reduced fields the slope is higher than this would predict



### Combining All HeCO<sub>2</sub> Data

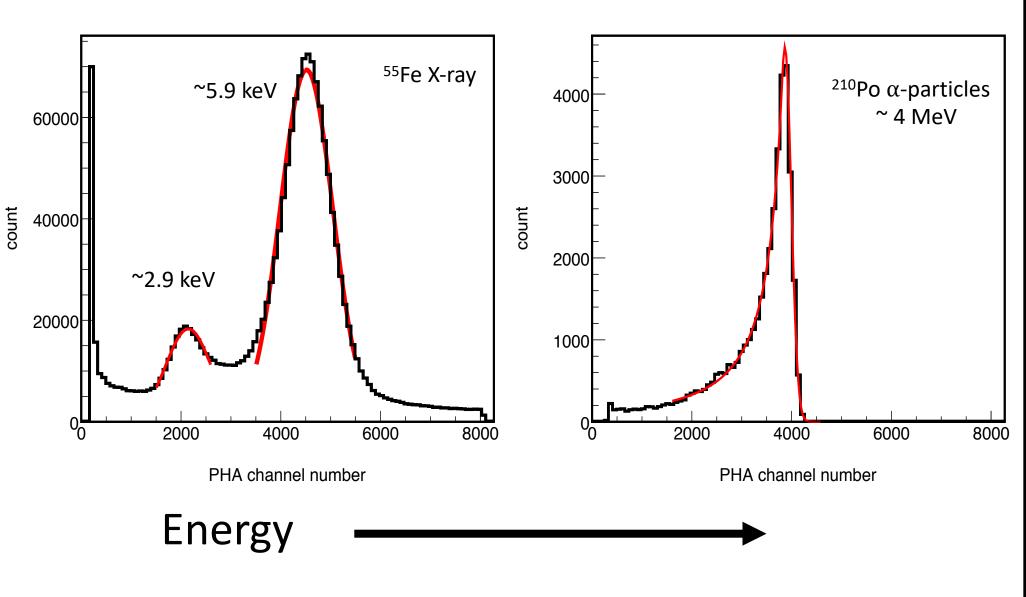
$$\frac{\ln(G)}{npt} = A\exp\left(-B\frac{npt}{V_{GEM}}\right)$$

- Multiple detector setups over many years
- $\alpha$  ~ E would be a straight line on this plot
- Over large reduced field ranges the Townsend coefficient's dependence on the field is not linear
- At high reduced fields the slope is higher than this would predict



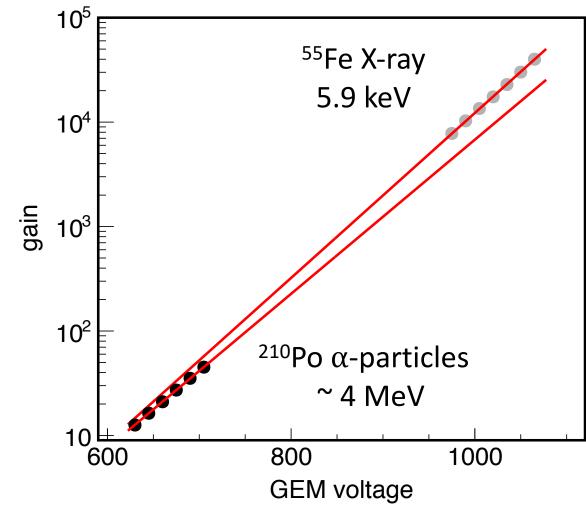
#### ArCO<sub>2</sub> – Double Thin GEMs

- ArCO<sub>2</sub> (70:30)
   @ 1 atm.
- First study done with D<sup>3</sup> – Micro
- Multiple energies
- How does the gain resolution depend on the incident energy?

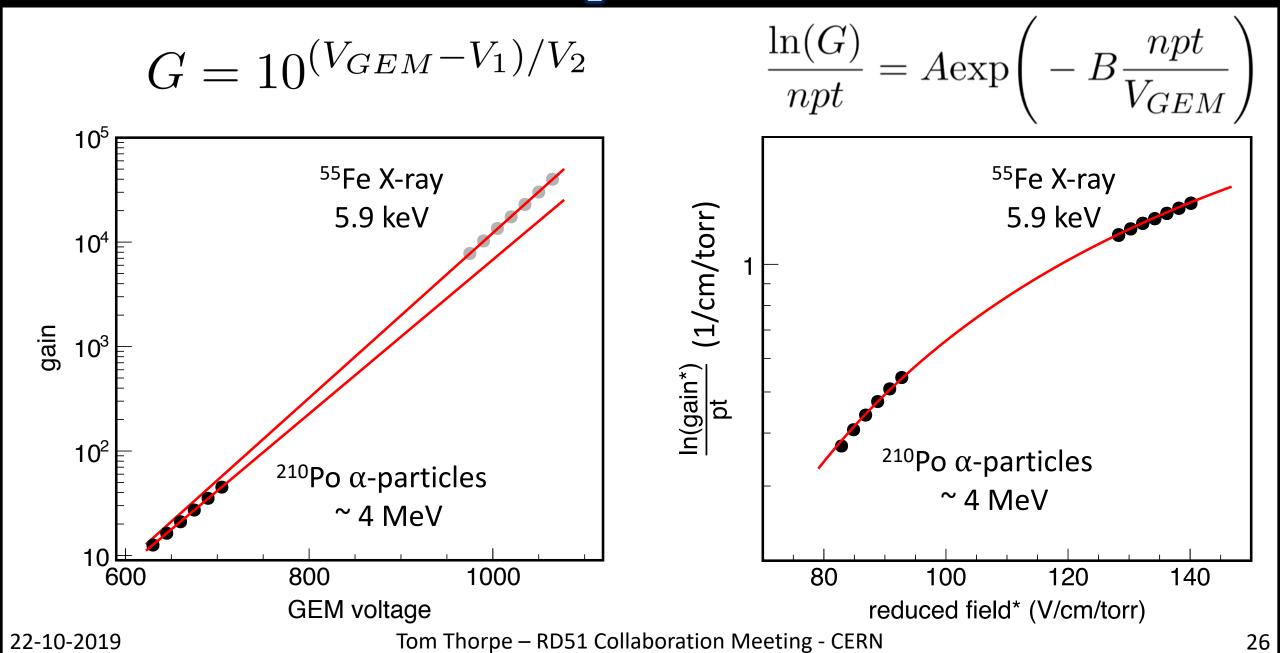


### ArCO<sub>2</sub> Gas Gain

$$G = 10^{(V_{GEM} - V_1)/V_2}$$



#### ArCO<sub>2</sub> Gas Gain



## SF<sub>6</sub> - Negative Ion (NI) Gas — Single THGEM

#### Why NI gas?

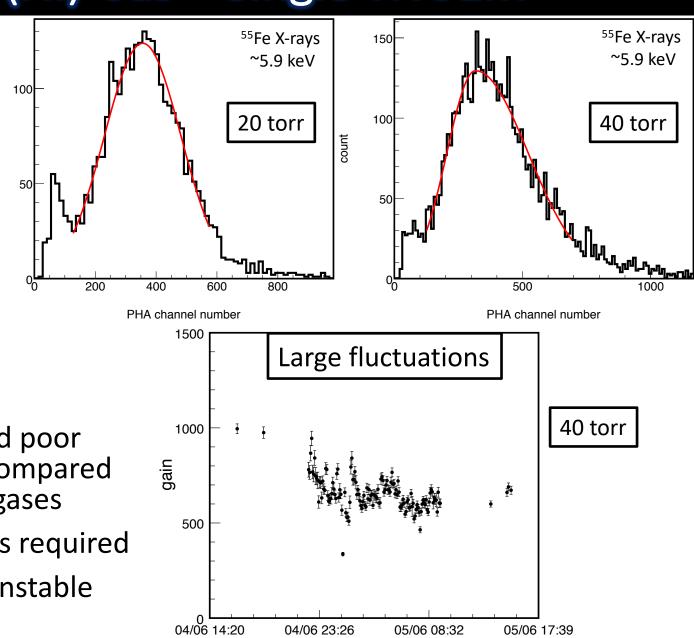
- Diffusion destroys recoil tracks
- Ions have much more mass
- Less diffusion (thermal limit?)
- Longer drift
- Larger fiducial volume



- 100% SF<sub>6</sub>
- Low gain and poor resolution compared to electron gases
- Gas flow was required

Tom Thorpe – RD51 Collaboration Meeting - CERN

Still highly unstable

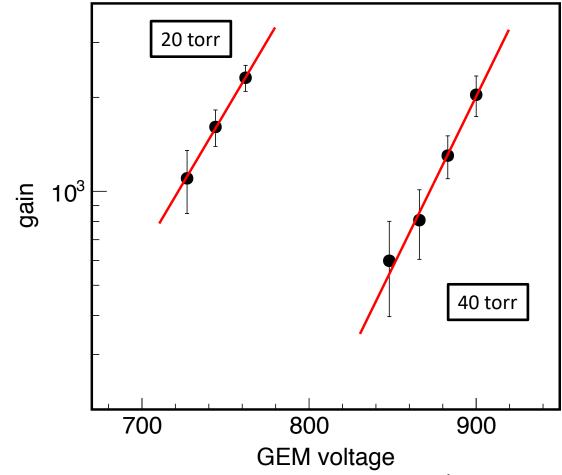


time

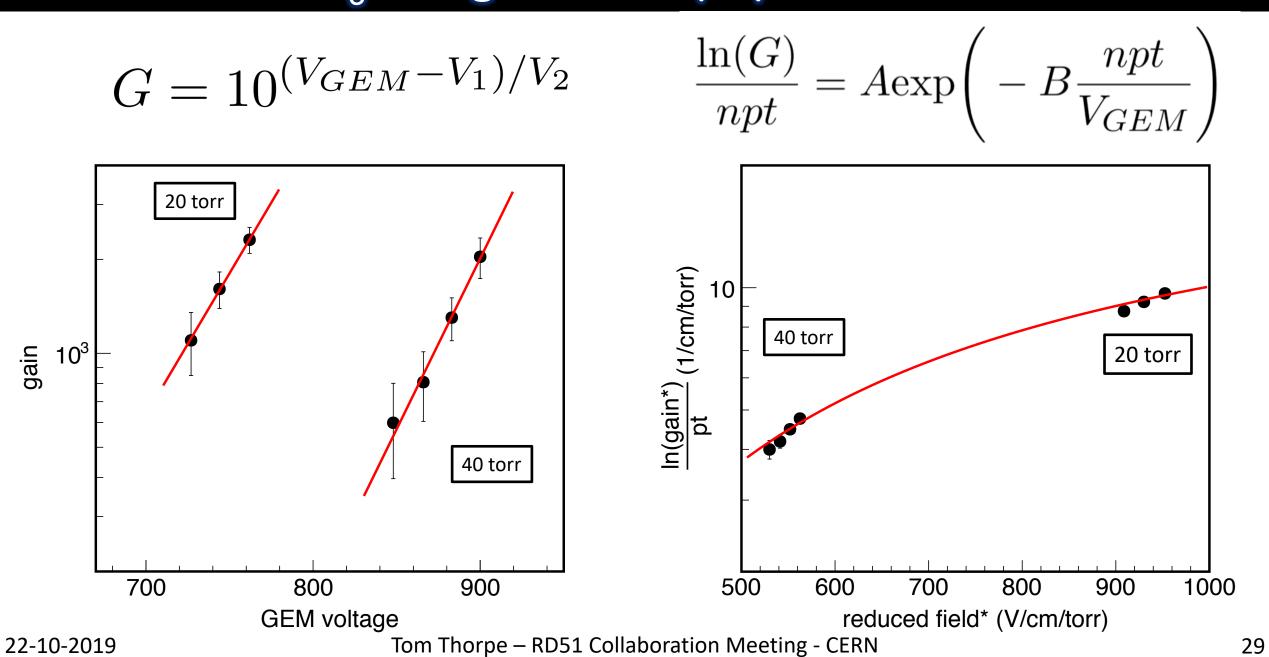
27

## SF<sub>6</sub> - Negative Ion (NI) Gas Gain

$$G = 10^{(V_{GEM} - V_1)/V_2}$$



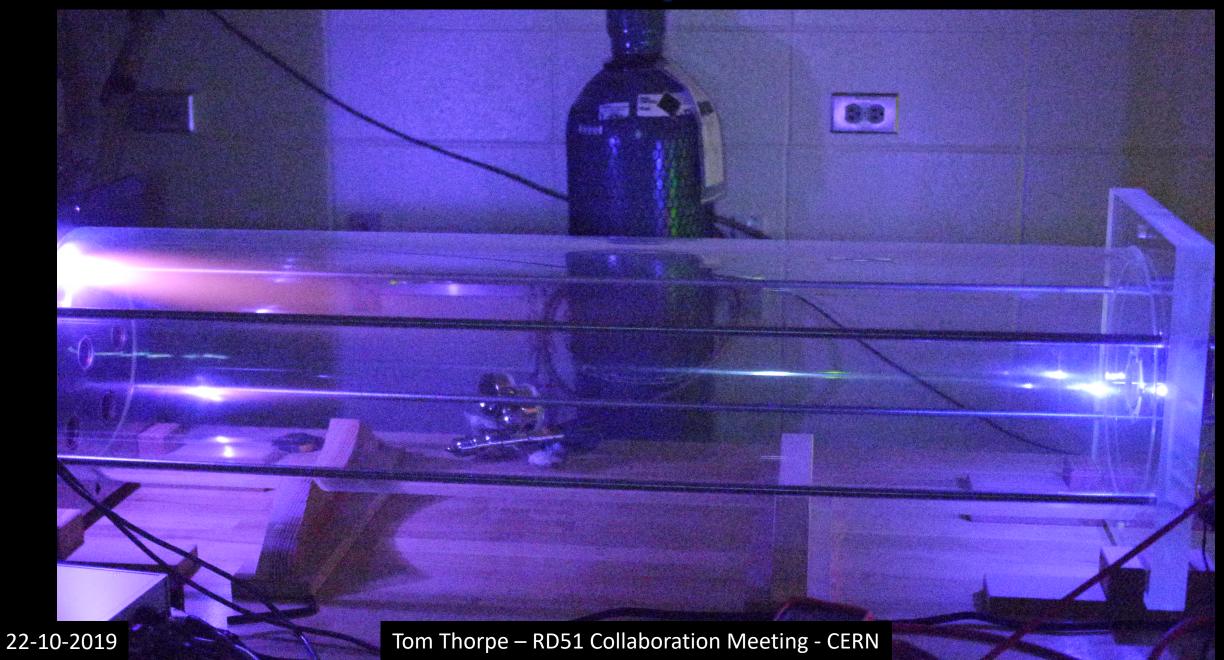
#### SF<sub>6</sub> - Negative Ion (NI) Gas Gain



#### Conclusion

- Working on getting this in a publishable form; comments are encouraged
- Goal was to describe different GEM data together, fundamentally
- Simple closed form description
- Over a large reduced field range, the field dependence of the Townsend coefficient is not simply linear
- Large systematics between setups that are not possible to account for
- Original model is naïve about the gain process itself
- Smaller effects
  - Gain fluctuations during measurements; hard to account for
  - Error on voltage between GEMs; likely has larger effect on the gain itself
- Gain resolution is another talk...

# Thank you!



## Backup

# Backup

#### Combining All HeCO<sub>2</sub> Data - Individual Fits

 $\mathbf{P} / \mathbf{\Lambda}$ 

 $29.3 \pm 0.6$ 

 $12.5 \pm 0.3$ 

 $34.7 \pm 0.7$ 

 $20.2 \pm 0.4$ 

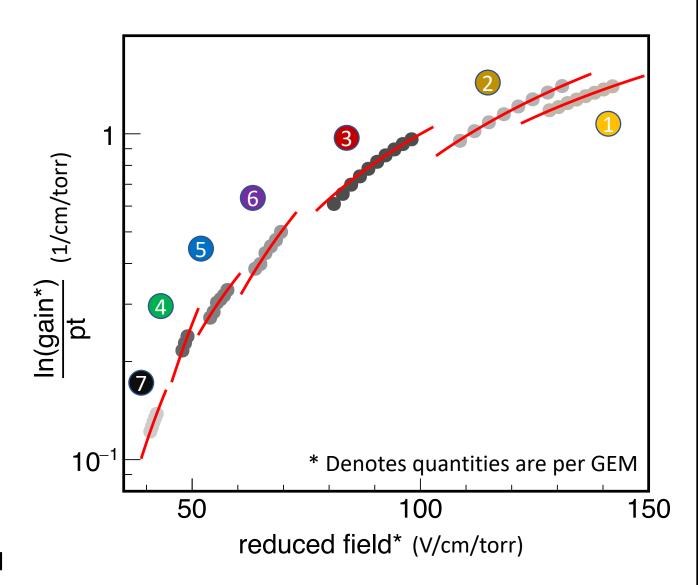
$$\frac{\ln(G)}{npt} = A\exp\left(-B\frac{npt}{V_{GEM}}\right)$$

| Data set    |      |                 | $\mathbf{D}/\mathbf{A}$ |
|-------------|------|-----------------|-------------------------|
| Double thin | GEMs | $(D^3 - Micro)$ | $32.9 \pm 0.7$          |

- 2 Double thin GEMs (D<sup>3</sup> Milli2)  $27.2 \pm 0.5$
- 3 Triple thin GEMs
- 4 THGEM 1.0 atm

Data set

- **5** THGEM 0.75 atm
- **6** THGEM 0.5 atm
- 7 Double THGEMs  $29.6 \pm 0.6$  Combined  $37.0 \pm 0.7$ 
  - More general interpretation
  - W = 34.4 eV for initial gain values
  - B/A gives back an "effective" ionization potential



### **GEM** dimensions

Table 3.1: GEMs used in  $D^3$  prototypes.

| GEM type | Thickness (cm) | Active area (cm) | Hole Diameter (cm) | Pitch (cm) |
|----------|----------------|------------------|--------------------|------------|
| Thin GEM | 0.005          | $5 \times 5$     | 0.007              | 0.0014     |
| THGEM    | 0.04           | $5 \times 5$     | 0.03               | 0.05       |