A Gas Gain Study with Multiple GEM Stages

Outline

- Setups in Hawaii
- Gas gain with GEMs
- Townsend coefficient
- HeCO₂ gas gain
 - Thin GEMs
 - Thick GEMs (THGEMs)
- ArCO₂ gas gain
- SF₆ Negative Ion (NI) gas gain
- Conclusion

D³ Prototypes

Micro (2011 - 2013)

Milli - stage 1 (2014 – 2017)

Milli - stage 2 (2017 – 2018)

Details:

GAIN RESOLUTION STUDIES AND FIRST DARK MATTER SEARCH WITH NOVEL 3D NUCLEAR RECOIL DETECTORS, Ph.D. Thesis, Thomas N. Thorpe, Dec. 2018.

Townsend's Equation with GEMs

- $\alpha = 1^{st}$ Townsend coefficient
- n is number of electrons in avalanche
- r is path along the avalanche
- G = gain
- t = GEM thickness

Townsend's Equation with GEMs

- $\alpha = 1^{st}$ Townsend coefficient
- n is number of electrons in avalanche
- r is path along the avalanche
- G = gain
- t = GEM thickness

Metal collection plate

If the field is constant then:

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

- General interpretation allows the interaction cross section to depend on fractional powers of the reduced field
- This manifests into the Townsend coefficient dependence
- Where $0 \le m \le 1$
- We will consider two cases:
 - m = 1
 - m = 0

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

If
$$m = 1$$
: $\alpha \sim E$

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

If m = 1: Recall:
$$\alpha \sim E$$
 In(G) = αt

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

If m = 1: Recall:
$$\alpha \sim E$$
 In(G) = αt $G = 10^{(V_{GEM} - V_1)/V_2}$ Operationally useful

HeCO₂ – Double Thin GEMs

HeCO₂ – Triple Thin GEMs

22-10-2019

HeCO₂ – Single THGEM

HeCO₂ – Double THGEM

- D³ Milli2
- Double THGEM; t = 0.04mm
- 1 atm. (70:30)
- ⁵⁵Fe x-rays
 ~5.9 keV
- More stable than a single THGEM

HeCO₂ – Double THGEM

- D³ Milli2
- Double THGEM; t = 0.04mm
- 1 atm. (70:30)
- ⁵⁵Fe x-rays
 ~5.9 keV
- More stable than a single THGEM

How do we put different data sets on the same plot?

Gain Per GEM - Before

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- * quantities are per GEM
- So G* is the gain per GEM

$$ln(G) = \alpha t$$

Gain Per GEM - After

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- * quantities are per GEM
- So G* is the gain per GEM

$$ln(G^*) = \alpha t$$

Gain Per GEM - After

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- * quantities are per GEM
- So G* is the gain per GEM

$$ln(G) = n\alpha t$$

Gain Per GEM - After

- Consider multiple GEMs
- If the total voltage is evenly divided among them then the log of the gain should be as well
- n is the number GEMs
- * quantities are per GEM
- So G* is the gain per GEM

$$ln(G) = n\alpha t$$

Now what?

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

So if
$$ln(G) = n\alpha t$$

And $m = 0$

$$\frac{\alpha}{N} = K \left(\frac{E}{N}\right)^m \exp\left(-L\left(\frac{N}{E}\right)^{1-m}\right)$$

p is the gas pressure

So if
$$\ln(G) = n\alpha t$$
And $m = 0$

$$\frac{\ln(G)}{npt} = A \exp\left(-B\frac{npt}{V_{GEM}}\right)$$

Combining All HeCO₂ Data

$$\frac{\ln(G)}{npt} = A\exp\left(-B\frac{npt}{V_{GEM}}\right)$$

- Multiple detector setups over many years
- α ~ E would be a straight line on this plot
- Over large reduced field ranges the Townsend coefficient's dependence on the field is not linear
- At high reduced fields the slope is higher than this would predict

Combining All HeCO₂ Data

$$\frac{\ln(G)}{npt} = A\exp\left(-B\frac{npt}{V_{GEM}}\right)$$

- Multiple detector setups over many years
- α ~ E would be a straight line on this plot
- Over large reduced field ranges the Townsend coefficient's dependence on the field is not linear
- At high reduced fields the slope is higher than this would predict

ArCO₂ – Double Thin GEMs

- ArCO₂ (70:30)
 @ 1 atm.
- First study done with D³ – Micro
- Multiple energies
- How does the gain resolution depend on the incident energy?

ArCO₂ Gas Gain

$$G = 10^{(V_{GEM} - V_1)/V_2}$$

ArCO₂ Gas Gain

SF₆ - Negative Ion (NI) Gas — Single THGEM

Why NI gas?

- Diffusion destroys recoil tracks
- Ions have much more mass
- Less diffusion (thermal limit?)
- Longer drift
- Larger fiducial volume

- 100% SF₆
- Low gain and poor resolution compared to electron gases
- Gas flow was required

Tom Thorpe – RD51 Collaboration Meeting - CERN

Still highly unstable

time

27

SF₆ - Negative Ion (NI) Gas Gain

$$G = 10^{(V_{GEM} - V_1)/V_2}$$

SF₆ - Negative Ion (NI) Gas Gain

Conclusion

- Working on getting this in a publishable form; comments are encouraged
- Goal was to describe different GEM data together, fundamentally
- Simple closed form description
- Over a large reduced field range, the field dependence of the Townsend coefficient is not simply linear
- Large systematics between setups that are not possible to account for
- Original model is naïve about the gain process itself
- Smaller effects
 - Gain fluctuations during measurements; hard to account for
 - Error on voltage between GEMs; likely has larger effect on the gain itself
- Gain resolution is another talk...

Thank you!

Backup

Backup

Combining All HeCO₂ Data - Individual Fits

 $\mathbf{P} / \mathbf{\Lambda}$

 29.3 ± 0.6

 12.5 ± 0.3

 34.7 ± 0.7

 20.2 ± 0.4

$$\frac{\ln(G)}{npt} = A\exp\left(-B\frac{npt}{V_{GEM}}\right)$$

Data set			\mathbf{D}/\mathbf{A}
Double thin	GEMs	$(D^3 - Micro)$	32.9 ± 0.7

- 2 Double thin GEMs (D³ Milli2) 27.2 ± 0.5
- 3 Triple thin GEMs
- 4 THGEM 1.0 atm

Data set

- **5** THGEM 0.75 atm
- **6** THGEM 0.5 atm
- 7 Double THGEMs 29.6 ± 0.6 Combined 37.0 ± 0.7
 - More general interpretation
 - W = 34.4 eV for initial gain values
 - B/A gives back an "effective" ionization potential

GEM dimensions

Table 3.1: GEMs used in D^3 prototypes.

GEM type	Thickness (cm)	Active area (cm)	Hole Diameter (cm)	Pitch (cm)
Thin GEM	0.005	5×5	0.007	0.0014
THGEM	0.04	5×5	0.03	0.05