## RD51 October 2019

## CERN MPT

resistive protections

## outline

- MPGD Resistive protections with resistive paste $100 \mathrm{~K} /$ sqr
- Single DLC application
- Embedded DLC application
- 2 DLC foils application


## Spark protection with resistive paste

Medium rate Micromegas detectors


- Single layer resistive paste screen printed

High rate Micromegas detectors


- Resistive paste Embedded resistor




Final chamber
Ready to be tested 2000 m2 for Atlas NSW


Embedded resistor made with resistive paste: high rate detectors

## Embedded resistor made with Screen printed paste: high rate detectors



PCB

12um Kapton gluing + drilling + silver via fill


Coverlay deposited with an isostatic press

## Embedded resistor made with Screen printed paste: high rate detectors



PCB

12um Kapton gluing + drilling + via fill
embedded resistor with resistive paste


## Embedded resistor made with Screen printed paste: high rate detectors



## Embedded resistor made with Screen printed paste: high rate detectors



PCB

12um Kapton gluing + drilling + via fill

embedded resistor screen printed


12 um Kapton gluing + via fill + top resistive printing


Bulk deposition


ILC DHCAL
Size $540 \times 530 \mathrm{~mm}-8$ layers PCB -1.6 mm
Active area $480 \times 480 \mathrm{~mm}$
Mesh 45/18 - Gap 128um
Rate of $10 \mathrm{Mhz} / \mathrm{mm} 2$ have been reached

## 2017 Introduction of DLC

GEM base material
$\mathrm{Cu} 5 \mathrm{um} / 0.01 \mathrm{umCr} / 50 \mathrm{um}$ Apical/0.01umCr/5um Cu

Adding DLC on one side $\mathrm{Cu} / \mathrm{Cr} /$ Polyimide/DLC

## CALIBRATION of CUSTOM-MADE PROBE



- $7 \mathrm{~cm} \times 7 \mathrm{~cm}$ square of DLC coated films are cut and painted with silver to make a connection between two edges of the film in order to measure the surface resistivity per square.
- Later, the probe is placed onto the surface of the DLC film and the resistance measurement is taken by using the multimeter.
- From the both measurement results, given in the table, the probe could be calibrated to coefficient factor at 1.06 and the error percentage is decreased up to $4 \%$. Since the coefficient factor is close to 1 , the value measured from the probe can be considered as the surface resistivity of the film.
- The probe does not have limitations on the resistivity range, it depends on the used multimeter.


## EXPERIMENTAL SETUP



As it was mentioned in the previous slide, custom-made probe and multimeter are used for the measurement.

> Two rulers were adjusted to take surface resistivity measurement from $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ squares. The bottom-left corner of the film was assigned as origin point. $1 \mathrm{~m} \times 0.6 \mathrm{~m}$ foils

$>$ By measuring the center of the squares, the film is scanned and results are transferred to Excel for 3D graph.

## RESULTS


$>$ The measured minimum and maximum resistivity values are $267-728 \mathrm{k} \Omega$.
$>$ On the left side of the thin film, the resistivity increases to the right.
However, after reaching the highest surface resistivity area the surface resistivity starts to decrease.

## RESULTS


$>$ The measured minimum and maximum resistivity values are $255-765 \mathrm{k} \Omega$.
$>$ On the left side of the thin film, the resistivity increases to the right.
However, after reaching the highest surface resistivity area the surface resistivity starts to decrease.

## RESULTS


$>$ The measured minimum and maximum resistivity values are $275-769 \mathrm{k} \Omega$.
$>$ On the left side of the thin film, the resistivity increases to the right.
However, after reaching the highest surface resistivity area the surface resistivity starts to decrease.

## EXPERIMENTAL SETUP



As it was mentioned in the previous slide, custom-made probe and multimeter are used for the measurement.

> The square template, which has the same side length with the diameter of the DLC coating, was divided into $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ squares and was opened a hole in order to make the measurement from the center of the square.
> Later, it was placed onto the DLC coated film and adjusted to origin point.

$>$ By measuring the center of the holes, the film is scanned and results are transferred to Excel for 3D graph.

## RESULTS

$\checkmark$ The area in the middle of the template and squares, which are not in the circle coating area, were assigned approximate resistivity values according to measurement in the adjacent squares in order to create a mesh in Excel for 3D graph. This was applied to all three DLC films.

| DLC1 | 3.25 | 8.25 | 13.25 | 18.25 | 23.25 | 28.25 | 33.25 | 38.25 | 43.25 | 48.25 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.4 | 35 | 35 | 35 | 35 | 38 | 43 | 51 | 50 | 50 | 45 |
| 8.4 | 35 | 33 | 36 | 37 | 40 | 45 | 48 | 50 | 45 | 45 |
| 13.4 | 35 | 35 | 37 | 38 | 43 | 47 | 52 | 51 | 46 | 45 |
| 18.4 | 36 | 38 | 38 | 41 | 43 | 46 | 52 | 53 | 50 | 45 |
| 23.4 | 36 | 36 | 39 | 41 | 45 | 45 | 53 | 54 | 48 | 48 |
| 28.4 | 37 | 36 | 37 | 40 | 45 | 45 | 49 | 54 | 46 | 46 |
| 33.4 | 38 | 38 | 39 | 41 | 45 | 49 | 53 | 54 | 50 | 48 |
| 38.4 | 37 | 37 | 38 | 43 | 44 | 51 | 53 | 54 | 51 | 50 |
| 43.4 | 37 | 39 | 39 | 40 | 45 | 51 | 54 | 54 | 51 | 50 |
| 48.4 | 37 | 39 | 39 | 43 | 46 | 49 | 52 | 51 | 50 | 50 |

DLC Film1


The measured minimum and maximum resistivity values are 35-54 M $\Omega$.
$>$ The resistivity increases from left to right part of the thin film.

## RESULTS



The measured minimum and maximum resistivity values are 44-73 M
The resistivity increases from left to right part of the thin film.

## RESULTS



The measured minimum and maximum resistivity values are $48-86 \mathrm{M} \Omega$.
$>$ The resistivity increases from left to right part of the thin film.

## Discussion


*Rotation of the film $90^{\circ}$ to the right from the origin is assumed as the coating direction.


Typical Schematic representation of magnetron sputtering mechanism.
$\rightarrow$ Surface resistivity could be measured by using the custom-made probe.
$\rightarrow$ There are may be few explanations for the non uniform DLC layer;
-Graphite target not placed parallel to the substrate,
-In case of target split in many small ones, the current density may be different in every one.

## DLC applied to Micromegas and uRwell



- Single Diamond like carbon (DLC) layer

-ILC TPC $15 \mathrm{~cm} \times 30 \mathrm{~cm}$
-Many evaluation detectors $10 \mathrm{~cm} \times 10 \mathrm{~cm}$
-T2K upgrade detectors production in progress 32 detectors $40 \mathrm{~cm} \times 40 \mathrm{~cm}$


## Resistive THGEM



## 2018 Cu on DLC

- $\mathrm{Cu} / \mathrm{Cr} /$ Polyimide/DLC/Cr/Cu


## Embedded DLC protection in MicroMegas and uRwell

High rate detectors

-Only evaluation detectors $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ active area PAD read out $1 \mathrm{~cm} \times 1 \mathrm{~cm}$ and $X / Y$

-Only evaluation detectors $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ Pixels $3 \mathrm{~mm} \times 1 \mathrm{~mm}$


## Embedded DLC layer : high rate detectors

"Sequential Built Up" technique

Base PCB

# Embedded DLC layer : high rate detectors 



PI/DLC/Cu foil gluing

## Embedded DLC layer : high rate detectors



Micro via drilling + Cu plating + Cu patterning +DLC patterning


## Embedded DLC layer : high rate detectors



New PI/DLC/Cu gluing

+ microvia drilling
+ Cu Plating
+ Cu Patterning
+ DLC patterning



## Embedded DLC layer : high rate detectors





Bulk creation on top of the structure
-Pillars hiding the Microvias -Better energy resolution


## High rate uRwells

SRL + Silver Grid: called "SG"


- High rate
-Flexible
-Low mass
-Alignment accuracy defining DOCA problematic with large detectors


Double res layer : called "DRL"


- Highest rate in theory
-Flexible
-Low mass
-More steps of production

-DOCA distance varies on the samples (Distance Of Closest Approach)
-between 1.0-0.1 mm
-DLC 60M
-11 samples per row



## Discussion on DOCA

- First surprise: the voltage to reach instabilities (up to 800 V in air)
- We were expecting 650V/670V for a 50 um gap
- After 30 sec with a limitation to 30 nA we can already observe a voltage drop
- It stabilize at voltages between 550 V to 650 V
- An average current of 30 nA per hole means 15 mA for a $10 \mathrm{~cm} \times 10 \mathrm{~cm}$ detector
- This current is too high and not realistic.
- We need to repeat the test with lower currents.
- We aren't able to define how many "low energy sparks" are created.
- We would like to study the current peaks with a fast oscilloscope
- No real difference from the different DOCA with 60M DLC


## Single DLC Resistive GEM


"on behalf of GDD, MPT and USTC"

## 2019 Cu and DLC both sides:

- $\mathrm{Cu} / \mathrm{Cr} / \mathrm{DLC} /$ Polyimide/DLC/Cr/Cu


## Full DLC GEM



Full DLC uRwell and AL pick up lines

Low mass detector, medium rate version


Low mass detector, high rate version


- We are still suffering from a low adhesion of Cr on DLC

Just for fun
Here are 2 methods to produce a plated through hole



## Conclusion

- We master now the embedded resistive paste process in large size
- The production of single DLC schemes are also stabilized
- The SBU process needs some improvements
- The 2 DLC foils shows interesting possibilities but we still need to improve base material for perfect structures

