Treatment of Fiducial Acceptance Cuts in q_T Resummation.

Johannes Michel DESY Hamburg

Work in collaboration with M. Ebert, I. Stewart, and F. Tackmann [in preparation]

LHC EW Precision Sub-Group Workshop

Recap of inclusive Drell-Yan.

Consider $p(P_a^{\mu})p(P_b^{\mu}) \to Z/\gamma^*(q^{\mu}) \to \ell^-(k_1^{\mu})\ell^+(k_1^{\mu})$:

• Cross section factorizes into leptonic/hadronic tensor, $q^{\mu}L_{\mu\nu} = q^{\mu}W_{\mu\nu} = 0$

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q} = L^{\mu
u}(q^\mu) W_{\mu
u}(q^\mu,P^\mu_a,P^\mu_b)$$

Leptonic tensor is simple, by convention includes line-shape (here: photon case)

$$L^{\mu
u}(q^{\mu}) \equiv L(q^2)(q^2g^{\mu
u}-q^{\mu}q^{
u})\,, \qquad L(q^2)\sim rac{lpha_{
m em}^2}{q^4}$$

- $d\sigma/d^4q = L(q^2)W(q^{\mu}, P^{\mu}_a, P^{\mu}_b)$ proportional to trace $W \equiv g_{\mu\nu}W^{\mu\nu}$
- W is scalar, so only depends on $q^2\equiv Q^2$ and $P_{a,b}\cdot q=E_{
 m cm}\sqrt{Q^2+q_T^2}\,e^{\pm Y}$
- Resummation limit $q_T \rightarrow 0$ of W receives only quadratic power corrections:

$$W = \, \Big\{ \delta(q_T^2) + lpha_s \Big[rac{\ln q_T^2/Q^2}{q_T^2} + rac{1}{q_T^2} + \delta(q_T^2) \Big] + \dots \Big\} \, \Big[1 + \mathcal{O} \Big(rac{q_T^2}{Q^2} \Big) \Big]$$

Recap of inclusive Drell-Yan.

Consider $p(P_a^{\mu})p(P_b^{\mu}) \to Z/\gamma^*(q^{\mu}) \to \ell^-(k_1^{\mu})\ell^+(k_1^{\mu})$:

• Cross section factorizes into leptonic/hadronic tensor, $q^{\mu}L_{\mu\nu} = q^{\mu}W_{\mu\nu} = 0$

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q} = L^{\mu
u}(q^\mu) W_{\mu
u}(q^\mu,P^\mu_a,P^\mu_b)$$

Leptonic tensor is simple, by convention includes line-shape (here: photon case)

$$L^{\mu
u}(q^{\mu}) \equiv L(q^2)(q^2g^{\mu
u}-q^{\mu}q^{
u})\,, \qquad L(q^2)\sim rac{lpha_{
m em}^2}{q^4}$$

- $d\sigma/d^4q = L(q^2)W(q^{\mu}, P^{\mu}_a, P^{\mu}_b)$ proportional to trace $W \equiv g_{\mu\nu}W^{\mu\nu}$
- W is scalar, so only depends on $q^2\equiv Q^2$ and $P_{a,b}\cdot q=E_{
 m cm}\sqrt{Q^2+q_T^2}\,e^{\pm Y}$
- Resummation limit $q_T \rightarrow 0$ of W receives only quadratic power corrections:

$$W = \underbrace{\left\{\delta(q_T^2) + \alpha_s \left[\frac{\ln q_T^2/Q^2}{q_T^2} + \frac{1}{q_T^2} + \delta(q_T^2)\right] + \dots\right\}}_{-\text{Wres}} \left[1 + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)\right]$$

Leptonic observables & tensor decomposition.

Consider $p(P_a^{\mu})p(P_b^{\mu}) \to Z/\gamma^*(q^{\mu}) \to \ell^-(k_1^{\mu})\ell^+(k_1^{\mu})$ and measure $k_{1,2}^{\mu}$:

Parametrize decay phase space by two rest-frame angles cos θ, φ:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4q\,\mathrm{d}\cos heta\mathrm{d}arphi} = L^{\mu
u}(q^\mu,\cos heta,arphi)W_{\mu
u}(q^\mu,P^\mu_a,P^\mu_b)$$

Leptonic tensor carries dependence on lepton momenta (shown: P-even case)

$$L^{\mu
u}(q^{\mu},\cos heta,arphi)\sim rac{lpha_{
m em}^2}{q^4}(k_1^{\mu}k_2^{
u}+k_2^{\mu}k_1^{
u}-g^{\mu
u}k_1\!\cdot\!k_2)$$

• Decompose $W^{\mu\nu}$ into nine allowed orthogonal tensor structures $K_i^{\mu\nu}$:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4q\,\mathrm{d}\cos heta\mathrm{d}arphi} = \sum_{i=-1}^7 (L\cdot K_i)(K_i\cdot W) \equiv \sum_{i=-1}^7 L_i W_i$$

Leptonic observables & tensor decomposition.

Consider $p(P_a^{\mu})p(P_b^{\mu}) \to Z/\gamma^*(q^{\mu}) \to \ell^-(k_1^{\mu})\ell^+(k_1^{\mu})$ and measure $k_{1,2}^{\mu}$:

Parametrize decay phase space by two rest-frame angles cos θ, φ:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4q\,\mathrm{d}\cos heta\mathrm{d}arphi} = L^{\mu
u}(q^\mu,\cos heta,arphi)W_{\mu
u}(q^\mu,P^\mu_a,P^\mu_b)$$

• Leptonic tensor carries dependence on lepton momenta (shown: *P*-even case)

$$L^{\mu
u}(q^{\mu},\cos heta,arphi)\sim rac{lpha_{
m em}^2}{q^4}(k_1^{\mu}k_2^{
u}+k_2^{\mu}k_1^{
u}-g^{\mu
u}k_1\!\cdot\!k_2)$$

• Decompose $W^{\mu\nu}$ into nine allowed orthogonal tensor structures $K_i^{\mu\nu}$:

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4 q\,\mathrm{d}\cos heta\mathrm{d}arphi} = \sum_{i=-1}^7 (L\cdot K_i)(K_i\cdot W) \equiv \sum_{i=-1}^7 L_i W_i
onumber \ = rac{\mathrm{d}\sigma}{\mathrm{d}^4 q} \Big[1 + \cos^2 heta + \sum_{i=0}^7 A_i f_i(\cos heta,arphi) \Big]$$

 $\blacktriangleright K_i$ map onto spherical harmonics $f_i(\cos heta,arphi)$ with angular coefficients A_i

Resummation in the strict $q_T \rightarrow 0$ limit.

What are the leading singular terms as $q_T
ightarrow 0$ that must be resummed?

- Expand hadronic structure functions as $W_i
 ightarrow W_i^{
 m res}$
- All* vanish except for $W_{-1}^{\text{res}} \leftrightarrow \mathrm{d}\sigma^{\text{res}}/\mathrm{d}q_T$ and $W_4^{\text{res}} \leftrightarrow \mathrm{d}A_{FB}^{\text{res}}/\mathrm{d}q_T$

*Up to intrinsically nonperturbative effects

- Expand leptonic tensor as $L_i(q_T, \cos \theta, \varphi) \rightarrow L_i(q_T = 0, \cos \theta, \varphi)$
 - Leptons are exactly back to back, $p_T^{\ell^-} = p_T^{\ell^+}$

No distinguished transverse direction anymore, so $L_i(\varphi)$

$$\blacktriangleright \ \frac{\mathrm{d}\sigma}{\mathrm{d}^4 q \operatorname{d}\cos\theta \mathrm{d}\varphi} \sim \frac{1}{2\pi} \Big[(1 + \cos^2\theta) W_{-1}^{\mathrm{res}} + \cos\theta \, W_4^{\mathrm{res}} \Big] \quad \mathrm{as} \quad q_T \to 0$$

• Underappreaciated fact: $W_{-1}^{\text{res}} \neq W_4^{\text{res}}$, easy to see from FO expansion:

$$W^{ ext{res}}_i = \delta(q_T) \sum_q Q^{ ext{EW}}_q(i) f_q f_{ar q} + \mathcal{O}(lpha_s)$$

► Calculating $A_4^{
m FO} imes {
m d}\sigma^{
m res}/{
m d}q_T$ does not recover $A_{
m FB}^{
m res}/{
m d}q_T$ at small q_T

Resumming fiducial power corrections.

What are the power corrections to $\sum_i L_i(q_T=0)\,W_i^{
m res}$?

- Hadronic structure functions are scalar, so $W_i = W_i^{
 m res} \left[1 + {\cal O}(q_T^2/Q^2)
 ight]$
- L_i are also scalar, but $L_i(q_T) = L_i(0) [1 + \mathcal{O}(q_T/Q)]$ in the presence of practically any measurements on the decay products

WHY? Boosting back into lab frame from rest frame (say: Collins-Soper frame), we have

$$p_{\ell^+}^\mu = rac{Q}{2} \Big(\gamma + rac{q_T}{Q} s_ heta c_arphi, \gamma s_ heta c_arphi + rac{q_T}{Q}, s_ heta s_arphi, c_ heta \Big), \quad \gamma = rac{\sqrt{Q^2 + q_T^2}}{Q}$$

- Measuring p_T^{ℓ} and/or η_{ℓ} results in a linear dependence on q_T
- We can fix this we can even exploit it!

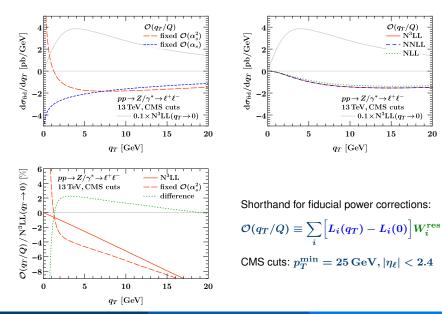
By restoring the exact q_T dependence of the L_i , we resum all linear power corrections to all orders in α_s :

$$rac{\mathrm{d}\sigma}{\mathrm{d}^4q\,\mathrm{d}\cos heta\mathrm{d}arphi} = \Big[L_{-1}(q_T)W^{\mathrm{res}}_{-1} + L_4(q_T)W^{\mathrm{res}}_4\Big]\Big[1+\mathcal{O}(q_T^2/Q^2)\Big]$$

Relation to literature.

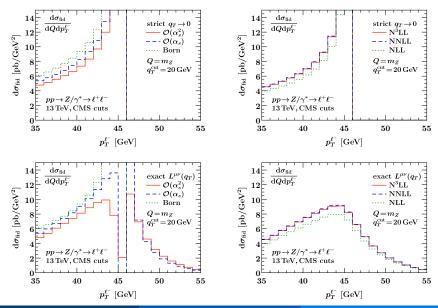
- Keeping $L_i(q_T)$ exact allows for nonzero recoil in the resummation ... see numerics on the next slides for examples of this
- Equivalent to evaluating tree-level matrix element in a (sensibly) boosted frame, as done e.g. in RESBOS or DYRES
- One-parameter ambiguity in how to distribute p_T between annihilating partons [Catani, Ferrera, de Florian, Grazzini '15]
 - Corresponds to slightly rotated basis choice for the $K_i^{\mu\nu}$
- Can show using $K_i^{\mu\nu}$ that the difference is strictly ${\cal O}(q_T^2/Q^2)$
 - Change of basis for *P*-even structure functions is known [Boer, Vogelsang '06]
- Linear power corrections to fiducial q_T spectrum are unique

Numerical impact: $\mathrm{d}\sigma_{\mathrm{fid}}/\mathrm{d}q_T$.



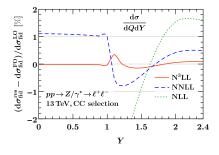
Johannes Michel (DESY Hamburg)

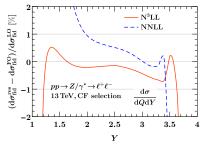
Numerical impact: $\mathrm{d}\sigma_{\mathrm{fid}}/\mathrm{d}p_T^{\ell^-}$.

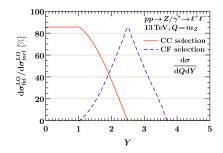


Johannes Michel (DESY Hamburg)

Application: Resummation effects in $\mathrm{d}\sigma_{\mathrm{fid}}/\mathrm{d}Y$.







Question: Is the fiducial rapidity spectrum sensitive to resummation effects? [see also talk by M. Boonekamp in Durham]

Note: Requires care to ensure

$$\int \mathrm{d}q_T \Big[\sigma^{\mathrm{incl}}_{\mathrm{res}} - \sigma^{\mathrm{incl}}_{\mathrm{sing}} \Big] = 0$$

Summary.

Treatment of Fiducial Acceptance Cuts in q_T Resummation:

- Demonstrated that linear power corrections in the fiducial q_T spectrum arise (only) from the cuts on leptonic phase space
- Enables their resummation at N³LL, including the physical effect of recoil
- Showed first results for the lepton p_T spectrum at N³LL
- Confirmed presence of resummation effects in the fiducial Z rapidity spectrum – stay tuned for LH study

Summary.

Treatment of Fiducial Acceptance Cuts in q_T Resummation:

- Demonstrated that linear power corrections in the fiducial q_T spectrum arise (only) from the cuts on leptonic phase space
- Enables their resummation at N³LL, including the physical effect of recoil
- Showed first results for the lepton p_T spectrum at N³LL
- Confirmed presence of resummation effects in the fiducial Z rapidity spectrum – stay tuned for LH study

Thank you for your attention!