

Resummation benchmarking

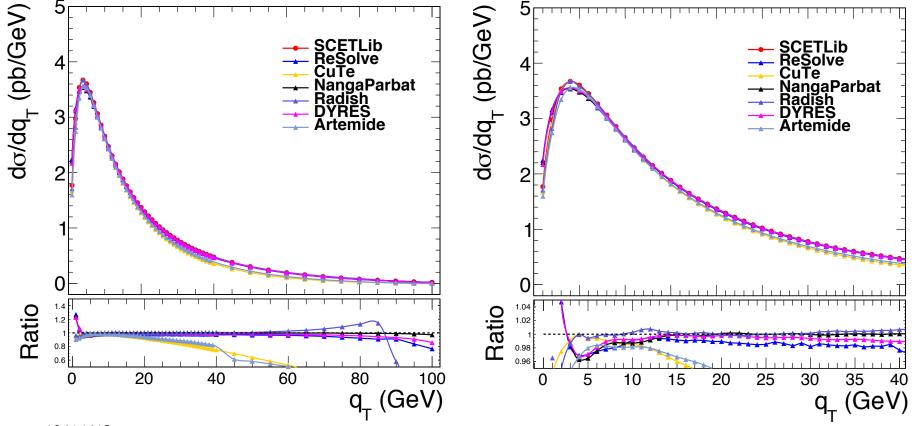
LHC EW precision group workshop

October 14, 2019

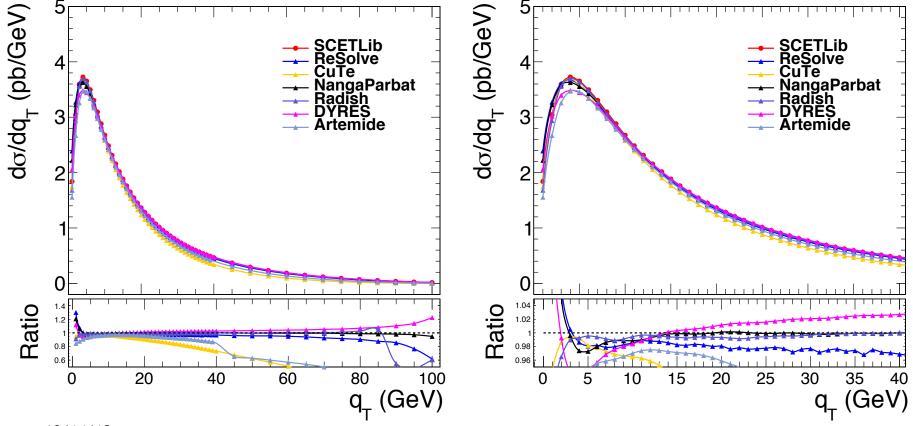
Benchmarking levels

- Benchmarking of resummed p_TZ , p_TW/p_TZ :
 - Document with specifics attached to the agenda
 - Inputs: https://gitlab.cern.ch/arapyan/pt-comparison
 - 1) Canonical logarithms (as much as possible)
 - Strictly $\ln(Qb_T/b_0)$, $\ln(q_T/Q)$, i.e. $\mu_H = Q_{\rm res} = Q$, $\mu_r = \mu_f = Q$
 - Including b^* or equivalent prescription, but no nonpert. form factor etc.
 - Result in b_T space (if possible)
 - Result in q_T space
 - 2) Nominal, favourite logarithms
 - ▶ Including turning off resummation at large q_T , e.g. $Q_{res} = Q/2$, profile scales, $\ln(b_T) \rightarrow \ln(1 + b_T)$, etc. ...
 - Result in q_T space

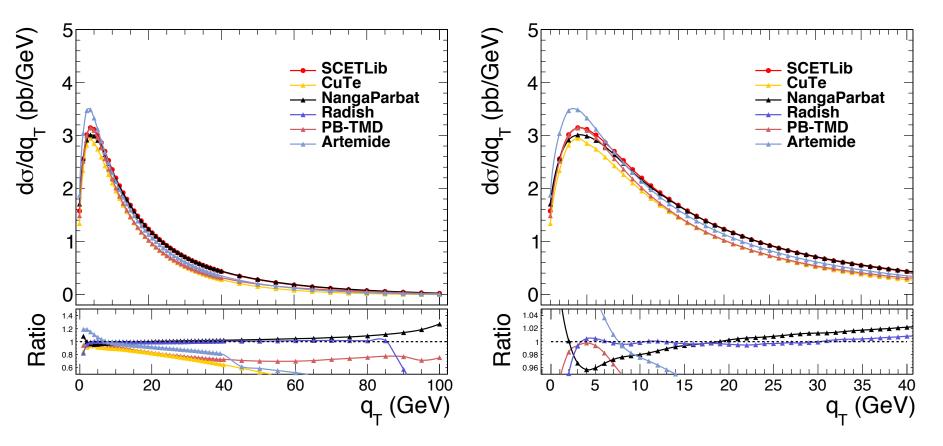
3) Resummation as in 2) plus matching nonsingular FO correction

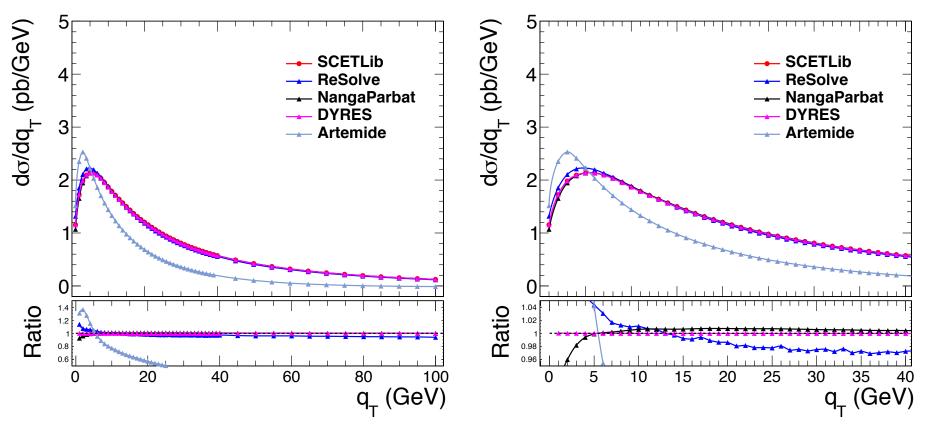

Resummation codes

	b-space	k _t -space	add.	mult.	m. logs	profile	trans. fun	NP corr
PB-TMD		\checkmark						\checkmark
CuTe		\checkmark	\checkmark				\checkmark	\checkmark
DYres/DYTURBO	\checkmark		\checkmark		\checkmark			(✔)
NangaParbat	\checkmark		\checkmark		\checkmark			\checkmark
RadISH		\checkmark	(🗸)	\checkmark	\checkmark			
ResBos2	\checkmark		\checkmark		\checkmark			\checkmark
Resolve	\checkmark		\checkmark		\checkmark			\checkmark
SCETLib	\checkmark		\checkmark			\checkmark		


+Artemide

	Boundary cond.	Anomalous di	FO matching	
Order	(FO singular)	γ_i (noncusp)	$\Gamma_{ m cusp},eta$	(nonsingular)
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	-
$NLL' (+NLO_0)$	α_s	1-loop	2-loop	α_s
NNLL $(+NLO_0)$	α_s	2-loop	3-loop	α_s
$NNLL' (+NNLO_0)$	α_s^2	2-loop	3-loop	α_s^2
$N^{3}LL (+NNLO_{0})$	α_s^2	3-loop	4-loop	α_s^2
$N^3LL' (+N^3LO_0)$	α_s^3	3-loop	4-loop	α_s^3
$N^4LL (+N^3LO_0)$	α_s^3	4-loop	5-loop	α_s^3


- NNNLL comparisons: SCETlib, Resolve(NNLLp), CuTe, NangaParbat, Radish, DYRES (NNLLp?), Artemide
- ReSolve PDF evolution is not through LHAPDF


- NNLL comparisons: SCETlib, Resolve(NLLp), CuTe, NangaParbat, Radish, DYRES (NLLp?), Artemide
- ReSolve PDF evolution is not through LHAPDF

- NLL comparisons: SCETlib, CuTe, NangaParbat, Radish, PB-TMD, Artemide
- ReSolve PDF evolution is not through LHAPDF

- LL comparisons: SCETlib, Resolve, NangaParbat, DYRES, Artemide
- ReSolve PDF evolution is not through LHAPDF

Next steps for inputs

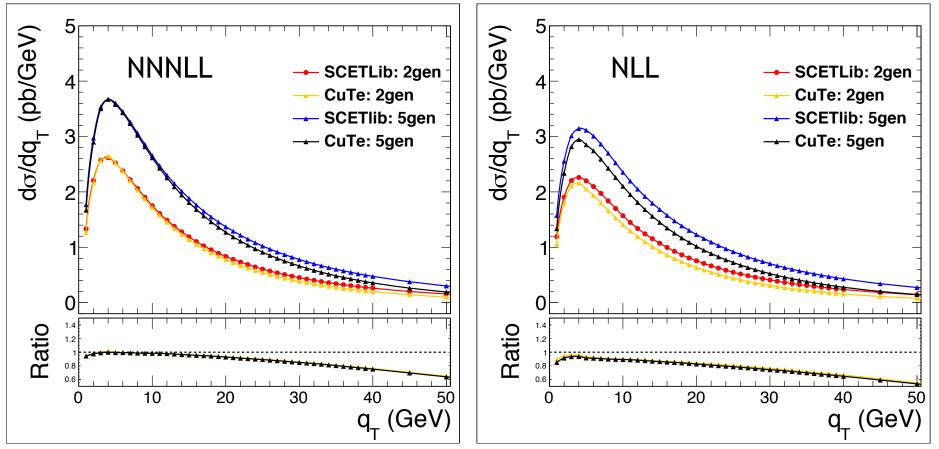
- So far seems ReSolve, NangaParbat, DYRES, Radish, SCETlib are within ~1% in qT>10 GeV and qT<80 GeV region
 - Cute, Artemide, and PB-TMD show larger differences (similar trend?)
- As discussed during the last meeting please upload the other Q points for level 1
 - Q=1TeV is a must
 - Q=66, 116, and 300 GeV points as many as possible
 - For example: NangaParbat already has all the Q and Y points
- Status of inputs for level 2 benchmarking
 - ReSolve and PB-TMD have already provided

Timelines and documentation

- We agreed early this year to proceed in successive steps fo the benchmarking from pure resummation benchmarking to "full resummation+fixed order (FO)" benchmarking
 - Levels 1, 2, and 3
- From the Precision EW group the 3 steps will converge for the Yellow Report. it was also tentatively agreed:
 - There will be real added value in publishing the results of these comparisons (one can include a suitable version of such a publication in a Yellow Report). This would be jointly signed by all participating resummation groups.
- Possible timeline?
 - Digest steps 1 and 2 by the end of the year. We can also document these results by the end of the year.
 - Can we produce the step-3 (matched to FO) results early next year?
 - Try to wrap up by Summer of next year!

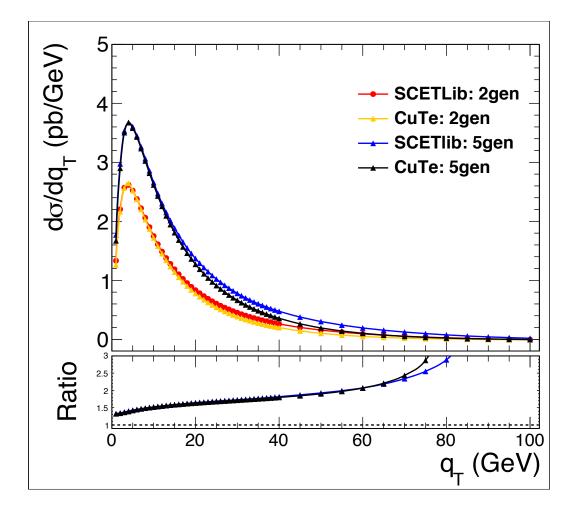
Theory uncertainties

- Discussion by Pier during the last meeting. Here re-iterating some of the discussion points for further discussion
 - Quantify systematic uncertainties in all-order calculations
 - perturbative: μ_R/μ_F scales, resummation scales,
 (difference in *resummation method* must be encoded too)
 - unitarity constraint: modified logarithms, profile functions, ...
 - matching: matching scheme, additional damping factors
 - Non-perturbative corrections: cutoffs (PDFs, α_s), NP models
 - Heavy flavours & mass thresholds: impact of bottom quark, thresholds in α_s and DGLAP evolution
- First 3 are the main/default objective of the benchmarking exercise. 4 and 5 are desirable but we have to see if there is time
- Theory uncertainties enter at L2 and L3. Of course provided that the differences in central values at L1 are understood

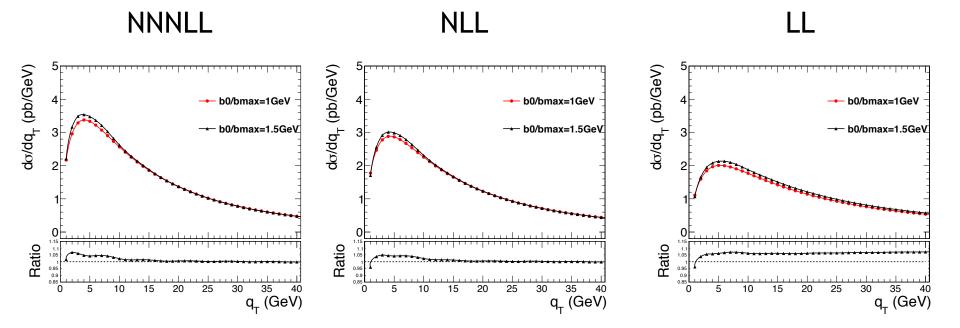

The objective

- The benchmarking exercise and W mass measurement
 - We benchmark Z, W, and W/Z ratio analytic resummed predictions
 - Has never been done before and there is already much to be learned
- Detailed study of how each of the uncertainty sources defined above impacts the W/Z ratio
- Final Goal: a list of uncertainties > what must be improved in the future ٠
 - As discussed during the last meeting the modeling of the correlations of the uncertainties in the pT W/Z ratio is outside of the scope of this first benchmarking result and documentation
 - This will be studied beyond Summer of 2020 within the LHC EW group 10/14/19

ADDITIONAL MATERIAL


gen=2 vs. gen=5, mZ, Y=0

• The CuTe/SCETLib ratio appears to be the same for 2gen and 5gen in all orders. Probably no need to generate 2gen inputs.


gen=2 vs. gen=5, mZ, Y=0

• Ratio plot: 5gen/2gen ratio (blue: scetlib, black: CuTe)

Non-perturbative cutoff

- NangaParbat had 1.65 GeV cut-off last round and has updated to 1.0 GeV
 - ~5% effect below 10GeV. What is happening with LL?

